Введение — Небесный зверинец

Звери на небе — наследие старины — частый повод для шуток над современными астрономами, которые здесь не при чем. Кто не слышал о Большой и Малой Медведицах на небе? В старину высокопоставленные столичные «остряки» посылали из Петербурга справляться на Пулковскую обсерваторию — «не забыли ли астрономы накормить на ночь Большую Медведицу»…

Тысячи лет назад фантазия древних населила небо мифическими существами и зверями, из которых многих нет ни в одном зоопарке на Земле. В небесном зверинце, кроме Жирафа, Льва, Лисички, Лебедя, Орла и многих других, есть Единорог, Дракон, Гидра и т. п. По традиции эти названия сохранились и по настоящее время, постоянно упоминаясь в научной литературе и облегчая сравнение древних описаний и наблюдений неба с современными. Ухо астронома-специалиста так привыкло к ним, что совершенно не замечает, каким диссонансом звучат эти названия среди терминов современной науки: интегралов, спектрографов, миллиграммов и термоэлементов. Только южное небо, изученное уже за последние столетия, было «населено» Воздушным Насосом, Микроскопом, Телескопом и другими более современными нам предметами.

Рис. 1. Созвездие Ориона, как оно видно на небе

Много красочных легенд древности, Греции и Рима нашло свое отралсение на небе. Вот одна из них. Легенда эта длинная, мы расскажем о ней коротко.

«Жил-был царь, звали царя Птолемей. Была у него жена, звали ее Вероника. Пошел царь воевать. Стало царю туго. Взволновалась царица, помолилась богине Венере. Обещала царица на алтарь богине волосы свои в дар принести. Пусть царь победит, — принесет царица жертву. Принесли гонцы о победе весть, и легла царская коса на алтарь храма. Не умели тогда париков делать, — осталась царица без кос. Вернулся с победой царь. Смотрит — царица стрижена, не пришел в восторг, опечалился. А астроном царя Коммон говорит ему: «Не грусти, царь, не печалься! Посмотри на небо, видишь звезды мелкие в небе темном? Это волосы Вероники твоей в небе светятся».

Умолчала легенда о том, утешился ли царь этой вестью, но поведала нам, как астроном Коммон «открыл» созвездие Волос Вероники. Странным кажется нам сейчас такое созвездие, странным кажется вознесение «волос» на небо, а иные женщины наших дней с недоумением спросят: что за жертва — ходить без кос!..

— так переменился с веками взгляд на неприкосновенность волос.

Рис. 2. Фигуры созвездий Ориона и Тельца в старинном звездном атласе

А вот и другая легенда о звездах, известная в разных вариантах.

Мы расскажем о ней в другом стиле, на другой вкус.

«На берегу знойного синего моря раскинулась древняя скалистая страна — Эфиопия. Был в ней царем давным-давно эфиопский владыка Цефей. У Цефея была жена, звали ее Кассиопея. И у царя с царицей родилась единственная дочь, прекрасная царевна Андромеда. Когда подросла она, не было эфиопок прекраснее, чем царевна.

Рис. 3. ‘Небесный зверинец’ — старинная карта звездного неба с фигурами созвездий

Возгордилась Кассиопея красотой своей дочери, стала хвастать перед всем миром и сравнила ее красоту с красотой богинь.

Тут прогневались боги и наслали они на Эфиопию страшное бедствие: каждый день выходило из моря страшное чудовище — Кит — и грозилось разорить страну.

Чтобы умилостивить ненасытного Кита, каждый день отдавали ему на съедение молодую девушку,- так требовало чудовище. Скоро не осталось уже девушек в бедной стране, и взмолился Цефей к богам и просил отвести от страны страшную кару.

— Просьба твоя будет уважена, — отвечали Цефею боги, — но отдай ты Киту в жертву дочь свою единственную и любимую, брось ему на съедение Андромеду — прекрасную царевну.

Долго рыдал Цефей, долго рыдала царица, но пришлось им расстаться с дочерью.

Приковали черную царевну цепями к белой известковой скале у моря. С грохотом разбивались волны о высокий утес, и жемчужная пена ласково лизала ноги обреченной жертвы.

Вот запенилось широкое море, поднялись водовороты в нем, и из пучины вынырнул страшный Кит. Жадно разинута его пасть. Пламя сверкало из маленьких свирепых глаз, и из ушей валил серый дым. А чешуйчатый хвост кольцами вился по воде, яростно щелкая по волнам.

Вот заметило чудовище свою новую жертву и еще ярче запылали его глаза. Ближе и ближе подплывало оно, рассекая морские волны.

Между тем среди белых громад облаков несся на крылатых сандалиях отважный герой Персей. Он недавно срубил своим волшебным мечом голову страшной Медузе, из крови которой взвился крылатый конь — Пегас. Взор Медузы обращал в камень всякого, кто осмеливался взглянуть ей в глаза. Но Персей перехитрил Медузу и сражался с ней, глядя не на саму Медузу, а на отражение ее в своем полированном блестящем щите.

И теперь Персей радостно летел. При нем была отрубленная голова Медузы, на которой вместо волос кольцами извивались отвратительные змеи. Вдруг видит Персей, что внизу, на морском берегу, к белой скале прикована цепями красавица, а к ней несется страшное чудовище.

Бросился Персей тотчас же в бой и направил на Кита взор головы Медузы. Окаменел Кит и превратился в скалистый остров, омываемый синим морем.

Рис. 4. Карта звездного неба с границами созвездия Большой Медведицы (пунктир — старые границы, сплошная линия — современные). Справа в крупном масштабе показана со слабыми звездами область, отмеченная слева прямоугольником

А Персей расковал Андромеду и отвел во дворец, где на радостях царь отдал ему Андромеду в жены. И тогда умиленные боги поместили на небо образы всех участников этих событий!»

Вы найдете на небе, по соседству друг с другом, созвездия Цефея, Кассиопеи, Андромеды, Кита и Персея с Пегасом. А одну из звезд в созвездии Персея долго называли Головой Медузы…

В древности под созвездием пощшали группу ярких звезд, характерных своим взаимным расположением, составляющих какую-либо фигуру, если эти звезды мысленно соединить прямыми линиями. Однако почти никогда мы не видим в этих характерных фигурах сходства с предметами, именами которых древние астрономы эти фигуры символически назвали.

Если говорить о созвездиях как о «фигурах», то Большая Медведица и Малая Медведица сходны друг с другом, но из-за своих длинных хвостов не сходны ни с медведицей, ни с медведем, а напоминают скорее всего лишь ковш или кастрюлю. Длинный хвост вообразили себе у них южане, давшие созвездиям эти названия и знавшие о медведях лишь понаслышке.

Рис. 5. Изображение созвездия Большой Медведицы в старинном атласе

Сейчас под созвездием понимают целую область на небе внутри определенных границ. К созвездию относят все звезды, которые видны в этой области неба. Однако в пространстве, если для простоты границы созвездия принять за круг, созвездие включает все звезды, находящиеся внутри конуса с вершиной в нашем глазу и с образующими его, проведенными к границам созвездия. Некоторые из звезд данного созвездия в пространстве дальше от своих соседок по созвездию, чем от звезд, видимых нами в совсем противоположной стороне неба. Выделение созвездий помогает нам ориентироваться на небе.

Яркость и имена звезд

Писатель Ив. Попов в романе «На исходе ночи» (В журнале «Октябрь», май 1960 г., стр. 41) пишет:

«-Видишь, Павел, звезду… вон там, над самой трубой… яркая… Не знаешь, как она называется?

— Не знаю.

— Пусть это будет моя звезда и твоя, наша с тобой звезда… эта звезда на меня смотрела… Назовем ее Питацея. Не знаешь, что такое Питацея? Я тоже не знаю… это я, кажется, сама выдумала, а может быть где-нибудь слышала… Питацея…»

Но имена наиболее ярким звездам люди уже давали тысячи лет назад. Их давали римляне, греки и арабы. У ярких звезд эти имена сохранились до наших дней: Сириус, Альдебаран, Вега, Антарес и другие. Более слабые звезды называют буквами греческого алфавита, примерно в порядке уменьшения их блеска, в каждом созвездии отдельно. Так, Сириус есть Большого Пса, Вега есть Лиры, Кастор есть Близнецов, а Поллукс Близнецов и т. д. Еще более слабые звезды обозначаются только номером в каталоге, в который они занесены, либо их координатами на небе и указанием блеска.

Александрийский ученый Гиппарх два тысячелетия назад рассортировал звезды по блеску на шесть групп, на шесть звездных величин. Самые яркие (в числе около 20) он назвал звездами первой величины, более слабые — звездами второй величины, а те, которые едва видимы невооруженным глазом, — звездами шестой величины. Чем блеск звезды больше, тем ее звездная величина меньше.

Удивляться такому разделению, т. е. сортировке звезд по их блеску, нечего. Никого ведь не удивляет, что наиболее крупные яблоки относят к первому сорту, менее крупные — ко второму и так далее.

Предложение Гиппарха оказалось удобным, его сохранили до наших дней и уточнили. Для звезд промежуточного блеска ввели дробные величины, например 2,15 или 3,47. Их обозначают 2m, 15 , 3m, 47 и т. д. Когда некоторую звезду взяли, скажем, за образец звезды первой величины, то звезды в 2,5 раза более яркие назвали звездами нулевой величины, а еще в 2,5 раза более яркие — звездами минус первой величины (так как блеск 20 ярчайших звезд Гиппарха оказался не строго одинаковым).

По сравнению со звездами первой величины звезды шестой величины в 100 раз слабее. Видимые в бинокль звезды седьмой и восьмой величины соответственно в 2,5 и в 6 раз еще слабее. Самые слабые звезды, какие только можно отчетливо видеть на фотографии, полученной с самым мощным современным телескопом, в триста миллионов раз слабее звезд первой величины, между тем их видимая звездная величина выражается всего лишь числом 22.

Адреса светил на небе

Когда вы отправляетесь прогуляться по незнакомому городу, вам будет полезен его план. Разыскивая в городе знакомого, вы нуждаетесь в его адресе. Когда вы отправитесь блуждать по звездному небу, вам будет полезна карта — план звездного неба. Разыскивая на небе светило, вы нуждаетесь в его адресе на небе. Адрес светила — это его координаты на небе. Мы говорим пока о видимом месте светила на небе, а не о его положении в пространстве. Для наблюдателя небо кажется шаром или сферой, на которую он смотрит изнутри и в центре которой находится он сам. Половина этой сферы для него скрыта под горизонтом. Все небесные светила кажутся одинаково далекими от нас, т. е. как бы находящимися на поверхности этой сферы. На самом деле это, конечно, не так, но считая все светила находящимися на поверхности небесной сферы (радиус которой кажется нам неопределенным), мы можем с удобством определять видимые положения (координаты) светил. Зная их, мы легко найдем эти светила на небе. Найдя на небе светило, мы можем тогда отметить его местонахождение на звездной карте.

6. Небесные координаты — прямое восхождение и склонение — заменяют адрес светила на небе

Если мы, находясь в центре воображаемой небесной сферы, мысленно проведем через свой глаз плоскость, параллельную плоскости земного экватора, то она пересечет небесную сферу по большому кругу — небесному экватору.

Проведем мысленно через свой глаз линию, параллельную оси вращения Земли,- она пересечет небесную сферу в точках, называемых полюсами мира. Северный из этих двух полюсов случайно приходится вблизи довольно яркой звезды, называемой Полярной. Ее, как известно, легко найти по группе семи ярких звезд, расположенных в форме ковша и называемых созвездием Большой Медведицы.

Как на земном шаре, так и на небесной сфере положение любой точки можно определить двумя координатами. На земном шаре эти координаты — географическая широта и географическая долгота. Широта отсчитывается в градусах от земного экватора по дуге меридиана в сторону северного или южного полюса — от экватора до данной точки. Долгота отсчитывается вдоль экватора от меридиана, принятого за начальный, до меридиана, проходящего через данную точку.

Вместо географической широты для небесной сферы пользуются склонением. Склонение отсчитывается в градусах, подобно широте, от небесного экватора по направлению к полюсам мира.

Вместо географической долготы на небесной сфере пользуются прямым восхождением, определяя его как угол между некоторым начальным небесным меридианом и меридианом, проведенным через данную точку неба.

Склонение и прямое восхождение светила — это его координаты, его адрес на небе. Адресный стол звезд — это каталог, содержащий их небесные координаты. Жителей на звездном небе так много, что для большинства из них не хватает имен. В адресном столе звезд зачастую имеется один лишь адрес без имени жителя. В этом случае звезда-«небожитель» значится просто под своим номером по каталогу.

Подавляющее большинство «небожителей» оседло, т. е. постоянно «проживает» по одному и тому же адресу, но есть блуждающие светила — небесные бродяги. Это — планеты и кометы. «Планета» в переводе с греческого и означает «блуждающая». Выяснилось, что блуждают по небу те светила, которые движутся в Солнечной системе, т. е. сравнительно близко от Земли. Их видимое положение на небе меняется как вследствие их собственного движения в пространстве, так и вследствие движения нас — зрителей — вместе с Землей. Остальные светила также оказались не неподвижными, но их движения едва заметны вследствие их удаленности от нас. Так, на огороде вы хорошо заметите изменения в положении тех, кто трудится на грядках по соседству от вас, а какой-нибудь далекий огородник виден все время в одной и той же стороне.

Рис. 7. Угловые расстояния светил на небе и их угловые размеры не соответствуют их расстояниям друг от друга в пространстве и их действительным размерам

Расстояния между светилами на небесной сфере, как расстояния между точками на шаре, выражаются в градусах. Эти угловые расстояния не надо смешивать с расстояниями между теми же светилами в пространстве. На небе две звезды могут быть видны близко друг к другу, а в пространстве одна из них может быть от нас во много раз дальше, чем другая. Видимый, угловой диаметр светил — это угол, под которым виден с Земли их истинный, т. е. линейный, диаметр. Например, угловые диаметры Луны и Солнца почти одинаковы. Они составляют около 0.5°. Луна маленькая, но близка к нам, диаметр же Солнца громаден, но Солнце от нас далеко. Полезно помнить, что отрезок окружности, равный приблизительно 1/57 доле радиуса, виден из центра под углом в 1°, а отрезок ее, составляющий 206265-ю долю радиуса, виден под углом в 1″. Это позволяет, зная угловой диаметр светила и расстояние до него, вычислить его линейный диаметр.

Например, если с расстояния в 150 000 000 км Солнце имеет видимый диаметр 0.5°, то его линейный диаметр составляет 150000000/114 км, т.е. около 1.5 млн. км.

Глаза, уши и руки астрономов (введение 2)

Прогулка по обсерватории

Бывает так, что, узнав о новейших открытиях астрономов, иной скептик покачает недоверчиво головой и скажет: «Да кто это видел, кто это слышал, кто это мерил, кто же это трогал?!» И потому прежде всего разрешите рассказать о том, чем астрономы видят, чем они мерят, чем они «трогают» небесные светила, т. е. какие у них «глаза», «уши» и «руки».

Глаза астрономов — карие и голубые, веселые и задумчивые — это обычные глаза людей, но в наши дни астрономы мало что смогут дать для науки, если они не воспользуются помощью стеклянного глаза телескопа.

Однако, когда на иную обсерваторию приходят люди и желают посмотреть в телескоп или хотя бы посмотреть на то, как астрономы смотрят в телескоп, то их нередко постигает разочарование. Им говорят, что астрономы здесь в телескоп ничего не рассматривают, что здесь нет ни одного телескопа, в который смотрели бы просто глазом.

Глаз человека теперь обычно заменяет фотопластинка и, может быть, правильнее было бы назвать глазом астронома именно ее. Но не только она одна воспринимает свет далеких светил. Есть много других точных и чувствительных приборов, которые лучше, чем глаз, определяют блеск и цвет небесных светил, лучше, чем рука, ощущают теплоту, испускаемую небесным телом. Они, как уши, «слышат» космические «шумы» — радиоизлучение и другие невидимые глазом излучения светил. О них мы прочитаем немного дальше. Все эти «инструментальные ощущения» небесных светил можно было бы назвать «шестым чувством» астрономов.

Пройдемся по большой астрофизической обсерватории, предназначенной преимущественно для изучения физической природы светил, и познакомимся с тем, что там можно увидеть

Общий осмотр обсерватории

В темную морозную ночь звездное небо блещет огоньками, и их мерцание приветливо приглашает к изучению светил. Но астроном, проводящий вас по территории, недовольно морщится: «Опять сильное мерцание, — говорит он, — значит, воздух неспокоен, и потому изображения светил в телескопе колеблются и дрожат, рассматривать их будет трудно». На дворе обсерватории темно, и астрономам всех стран случалось в прошлом иногда слышать, как иной посетитель, может быть, не чуждый любительской портретной фотосъемке, сочувственно вопрошал: «Скажите, наверно, вам приходится фотографировать звезды при вспышке магния!?» Но осветить вспышкой магния даже близкую к нам Луну было бы несколько затруднительно и, фотографируя светила именно за счет их собственного света, приходится, наоборот, тщательно оберегать фотопластинку от постороннего света. Поэтому иногда даже курить поблизости приходится с осторожностью!

Еще один возможный и надоевший вопрос кого-либо из экскурсантов астроном, вероятно, сам поторопится предупредить: «Мы погоду не предсказываем. Это дело метеорологов». Погода — это состояние атмосферы, а интересы астрономов лежат за ее пределами.

Окидывая взором обсерваторию, вы замечаете, что на территории, кроме одного-двух больших зданий, раскинуты башни, большие и малые, с круглыми куполами, которые можно по желанию поворачивать. В куполах видны широко раскрытые прорези-люки, сквозь которые свободно проходит воздух. Через эти люки телескопы глядят в небо. Часовой механизм медленно поворачивает трубу вслед за суточным вращением звездного неба, и когда производится фотографирование большим телескопом, то астроном лишь время от времени смотрит в меньший телескоп, укрепленный на большом и параллельный ему, чтобы проверить, правильно ли действует часовой механизм и не нужно ли поправить положение телескопа или изменить быстроту хода механизма.

Холодно в башне. Но разве нельзя наблюдать в телескоп, находясь в теплом помещении и глядя в него через стекло?

— Увы!.. Стекло, из которого делаются объективы телескопов, должно быть самого лучшего качества с точки зрения его однородности и других свойств. Поверхность его должна иметь заданную форму и может отклоняться от нее не больше чем на десятитысячные доли миллиметра. Всякое обыкновенное стекло перед объективом, пусть самое лучшее, так испортит изображения, даваемые телескопом, что ничего нельзя будет рассмотреть. Одеть наблюдателя в какой-нибудь костюм с искусственным подогревом тоже нельзя, потому что от него пойдут струи теплого воздуха и, уходя наверх через люк, они будут еще больше портить изображения светил, и без того испорченные неспокойствием земной атмосферы — всегдашнего «врага» астрономов. Наоборот, чтобы уничтожить токи воздуха из башни наружу, ее нарочно проветривают еще до наблюдений.

Наличие этого «врага» служит причиной того, что в большой телескоп вам могут показать Луну лишь с тем же увеличением, как и в небольшой телескоп,- с увеличением в 150-200, редко в 300 раз и никогда с увеличением свыше 500-600. Между тем телескоп с зеркалом диаметром в 5 метров мог бы дать увеличение порядка 20 000 раз, но таким увеличением нельзя воспользоваться из-за помех, создаваемых волнением земной атмосферы.

«Зачем же вы строите тогда все большие и большие телескопы?» — спросите вы, и астроном ответит:

«Чем больше диаметр телескопа, тем больше света он собирает, тем больше светил в него видно, тем более далекие и реже встречающиеся светила можно с ним наблюдать, тем меньше времени тратится на их фотографирование».

Едва ли кому-нибудь может прийти в голову, чтобы старший астроном смотрел в самый большой телескоп, а самый младший астроном использовал самый маленький телескоп. Не говоря уже о том, что в большинстве случаев сейчас в телескоп вообще не смотрят, а фотографируют им или приставляют к нему какой-либо вспомогательный прибор,- распределение телескопов производится не по чинам астрономов, а по выполняемым ими задачам. Телескопы бывают очень разных свойств и не одним размером определяются их качества и достоинства. Для решения некоторых научных задач астроном не променяет специальный маленький телескоп на самый большой, но менее для него подходящий.

Дело в том, что одни телескопы, дающие крупный масштаб изображений, позволяют фотографировать сразу только маленький участок неба и требуют долгой выдержки для получения «портрета» кометы или другого небесного светила. Другие же телескопы позволяют, хотя и в мелком масштабе, сразу заснять большие участки неба, а давая маленькое, но яркое изображение кометы с хвостом, допускают короткую выдержку (экспозицию). Телескопы, специально приспособленные для фотографирования, называются астрографами (астро-графами), хотя просто фотографами (фото-графами) называются не приборы, а люди, что и приводит иногда к недоразумениям.

Фотографии неба, а именно стеклянные негативы, на обсерваториях берегут как зеницу ока. Из таких негативов со временем составляется целая «стеклянная библиотека», хранящая в себе историю неба. Каждый негатив — это важный документ. Сравнивая старые фотографии неба с новыми, мы обнаруживаем изменения в небе: колебания блеска звезд, их взаимные перемещения и прочее.

Кроме обычных телескопов вы можете увидеть странные, гигантские сооружения, какие-то фермы, металлические сетки и сотни стержней на рамах. Вас уверят, что это радиотелескопы. Но о них — потом.

Оптические телескопы — глаза астрономов

Главное назначение телескопа, — повторим еще раз, — это собрать как можно больше света от небесных светил. Астрономам вечно не хватает света от звезд, чтобы его всесторонне анализировать. Вот почему мы гонимся за увеличением диаметра телескопов, но стараемся вместе с тем повысить и даваемый ими масштаб изображений светил. Масштаб зависит от длины телескопа, точнее, от его фокусного расстояния, или расстояния от объектива до того места, где получается изображение светила. Чем больше изображение, тем, конечно, лучше его можно рассмотреть.

С увеличением размеров телескопа растут все трудности его изготовления, так как вес его растет пропорционально кубу его диаметра, а точность его изготовления должна быть все та же. Эта точность определяется тем, что стекло объектива должно быть везде одинаково однородным, что отшлифовано и отполировано оно должно быть с точностью до десятитысячных долей миллиметра. Кроме того, установка должна быть настолько совершенной с механической точки зрения, чтобы громадный телескоп мог двигаться вслед за суточным вращением звезд, не допуская отклонений больше двух-трех сотых миллиметра.

Представьте же себе махину, которую по грузности можно сравнить с паровозом, изготовленную с такой точностью и плавно перемещающуюся по воле наблюдателя!

Вращение телескопов вслед за суточным вращением неба производится вокруг оси, направленной на полюс мира, и осуществляется часовым механизмом.

Два века шла борьба между двумя типами телескопов — рефракторами (с выпуклым преломляющим стеклом-объективом) и рефлекторами (с вогнутым отражающим зеркалом). В конце прошлого века рефлекторы победили в области крупных инструментов, потому что зеркала стали делать уже не из металла, как раньше, а из стекла, и покрывать тончайшим слоем серебра или алюминия, отражающим свет. Для зеркала не надо такого хорошего и строго определенного сорта стекла, какое нужно для объектива, через который свет проходит насквозь, и шлифовать приходится только одну поверхность, а не четыре, как в объективе, обычно состоящем из двух стекол. Рефлекторы не только дешевле, их не только легче изготовлять, но им можно придать такие размеры, которые для рефракторов оказались неосуществимыми.

Рис. 8. Двойной астрограф Симеизской обсерватории. У окулярного конца контрольной трубы астрографа — автор этой книги. (Снимок 1931 г.)

В XX веке так и не удалось сделать объективы большие тех, какие (до 1 м диаметром) делали в конце прошлого века. Не удалось сделать объективы даже того же самого размера. Между тем, рефлекторы таких размеров изготовляются без особых помех, и в Калифорнии (США) после второй мировой войны вступил в строй телескоп-гигант с зеркалом диаметром в 5 м.

Рис. 9. Телескоп Максутова (о котором мы подробно расскажем дальше), установленный на Пулковской обсерватории. В руках у наблюдателя — клавиши управления, позволяющие направлять телескоп в нужную точку неба простым нажатием кнопок

В нашей стране первые рефлекторы изготовлял Яков Брюс еще в начале XVIII века. С тех пор в России был построен ряд крупных обсерваторий, число которых после Великой Октябрьской социалистической революции быстро возросло.

«Крепости» советской астрономии сильно пострадали от нашествия фашистских варваров. Пулковская обсерватория — «астрономическая столица мира» (как ее вслед за американскими астрономами Гульдом и С. Ньюкомбом часто называли за рубежом) была разрушена при блокаде Ленинграда.

Рис. 10. 6-метровый телескоп-рефлектор, установленный в СССР

Благодаря заботе партии и правительства обсерватории, разрушенные фашистами, восстановлены и оборудованы лучше прежнего. Выстроено также много новых обсерваторий.

Советская страна имеет теперь собственную оптико-механическую промышленность, которой в царской России не было совсем, но которая на базе осуществленных пятилетних планов выросла и после войны стала особенно мощной. Но дело не только лишь в воспроизведении давно существующих типов телескопов, погоне за простым увеличением телескопов с сохранением всех их недостатков.

Рис. 11. Схема телескопа Максутова

В самом деле, рефлектор все лучи разного цвета собирает в один фокус, давая неокрашенное изображение, да вот беда — фотографировать им плохо. Чуть в сторону от той точки неба, куда направлен телескоп, — и изображения звезд уже превращаются в фокусе из точек в подобие каких-то птичек и размываются так, что даже «и смотреть на них не хочется».

Между тем астроном хочет, а часто и должен сфотографировать сразу большой участок неба, скажем, целое созвездие. Как быть? Не поможет ли обыкновенный фотографический объектив? Но очень большие объективы хороших качеств (из нескольких линз) для фотографирования звезд мы делать пока не умеем, да и стекла их поглощали бы слишком много света вследствие своей большой толщины. Более простые объективы не дают резких изображений большого участка неба, хотя они и лучше, чем рефлекторы. Но, кроме того, всякий объектив дает непременно слегка окрашенное изображение, так как не сводит в одну точку все лучи разного цвета, идущие от звезды.

Рис. 12. Вот как выглядит 2,6-метровые телескопы-рефлекторы, установленные на Крымской и Бюраканской обсерваториях

Уже простой рефлектор с описанным выше недостатком должен иметь вогнутое зеркало с поверхностью не в форме участка шара (сферической), а с несколько иной (параболической), изготовить которую гораздо труднее, чем сферическую. Попытки же сделать телескоп из ряда зеркал сложной формы приносили новые трудности и мало пользы.

Когда из окруженного врагами Ленинграда стали вывозить голодающих, но стойких ленинградцев, в одном из поездов на полке лежал и думал очень высокий человек. Много интересных и полезных мыслей родилось в голове этого пассажира, но сейчас пассажир размышлял над печальной судьбой своего детища. Детищем этим был предполагавшийся массовый выпуск школьных телескопов, которые до этого у нас не производились. Телескоп предполагалось делать зеркальный — маленький рефлектор. Но и помимо войны, прервавшей производство телескопов, рефлектор этот обещал много хлопот. Алюминированное зеркало его от действия воздуха и пыли потускнеет, и школы станут его браковать, — размышлял пассажир.

— Хорошо бы предохранить зеркало от этой опасности, защитив его спереди плоскопараллельным стеклом, — думал Д. Д. Максутов, ибо пассажир и был именно этим нашим выдающимся оптиком. Но тогда, продолжал рассуждать Максутов, имеющееся в рефлекторах маленькое зеркальце, которое отбрасывает лучи назад или вбок, где они и собираются в фокус и где ставят окуляр, можно приклеить к этому самому переднему стеклу. При этом отпадет надобность в особых держателях маленького зеркала, которые портят изображение. Но ведь в одном из телескопов маленькое зеркало бывает вогнутым или выпуклым. Почему бы тогда не заменить плоскопараллельное стекло мениском, т. е. выпукло-вогнутым стеклом, таким, чтобы его центральная посеребренная часть сама являлась маленьким зеркалом нужной кривизны. Конечно, — думал Максутов, — мениск надо взять с такими кривизнами поверхности, чтобы он подобно плоскопараллельному стеклу не искажал изображений, даваемых несферическим зеркалом, иначе… И вот тут-то Максутов и сделал свое открытие. Можно взять легко изготовляемое сферическое зеркало, искажающее изображение, так сказать, в одну сторону, а мениск сделать таким, чтобы он настолько же искажал изображение в противоположном направлении. В итоге ошибки системы взаимно уничтожатся, и изображение будет безупречным по форме. Малая толщина стеклянного мениска обеспечивает отсутствие заметного различия в положении фокуса для разных лучей. Так сам Д. Д. Максутов рассказывал о ходе своих мыслей.

Рис. 13. Шлифовку зеркала диаметром 26 см проводит Б. А. Воронцов-Вельяминов (1940 г.)

Такой менисковый телескоп можно применять вместо обычного рефлектора для рассматривания светил, но он будет и лучше по качеству и в несколько раз короче, т. е. удобнее в обращении. Менисковый телескоп может явиться и фотокамерой огромных размеров для фотографирования больших участков неба. Ряд лет для школ выпускались маленькие менисковые телескопы по системе Максутова. Изготовлены и большие менисковые телескопы, предназначенные и используемые для научных целей. Наибольший из них, диаметром 70 см, установлен в горах Грузии, на Абастуманской обсерватории.

Развитие советской оптико-механической промышленности сказалось в том, что в1967 г. была закончена сборка основных частей самого большого в мире телескопа с параболическим зеркалом диаметром 6 м.

Небольшой телескоп можно изготовить в домашних условиях. Каждый аккуратный и терпеливый человек, в том числе школьник, без большого труда и затрат может сделать себе настоящий телескоп-рефлектор с зеркалом диаметром от 10 до 15 см. Это несравненно проще, чем можно себе представить.

Рис. 14. 26-сантиметровый рефлектор, изготовленный собственноручно автором книги и установленный на здании Саратовского ун-та в 1973 г. Стоят сотрудники университета и автор (в середине)

К сожалению, сделать для такого телескопа хорошую подставку гораздо труднее, так как это требует и разных материалов и умения работать если не по металлу, то хотя бы по дереву, чем могут похвалиться немногие из любителей небесных тайн.

Перед Великой Отечественной войной, не удовлетворяясь тем, что в моем Московском университете не было тогда никакого подходящего рефлектора, я решил изготовить его сам. Шлифовать зеркало диаметром 26 см и делать для него все механические части монтировки я был так же неподготовлен, как большинство из вас, дорогие читатели. Пришлось стать оптиком-любителем и конструктором-токарем-механиком-любителем. Но работа, не блистая внешней отделкой, все же удалась. В дальнейшем Московский университет получил более мощные телескопы, и я передал свой телескоп Саратовскому университету. Там его дооборудовали часовым механизмом, и он теперь несет службу на станции наблюдения искусственных спутников Земли. Его используют также и для другой научной работы и для демонстрации небесных светил учащимся и населению. Немало любителей изготовили сами телескопы еще большего размера и с лучшей отделкой, так что, как видите, «не боги горшки обжигают».

Зеркало изготовляют, двигая радиально и вращая в то же время один толстый стеклянный диск по другому такому же, поместив между ними смоченный порошок — абразив (Отсылаем читателя к книге проф. М. С. Навашина, «Телескоп астронома-любителя», изд. 3-е, «Наука», Главная редакция физико-математической литературы, 1975)).

Спутники телескопа

Наиболее увлекательные и подробные сведения о физической природе небесных тел дают не простое их рассматривание и фотографирование, а точные измерения при помощи вспомогательных приборов. Они — спутники больших телескопов.

Для измерения положений и размеров светил на фотографиях в лаборатории, находящейся при обсерватории, имеются специальные измерительные приборы, позволяющие измерять расстояния на пластинке с точностью до тысячной доли миллиметра.

Хотя эти приборы и являются «вспомогательными» при телескопах, данные, доставляемые ими, часто являются более ценными, чем те, которые мы получаем, наблюдая непосредственно в телескоп.

Для измерения блеска небесных светил служат приборы — фотометры, в том числе фотоэлектрические. Действие последних основано на том самом принципе превращения света в электроэнергию, который используется, например, в звуковом кино.

Для измерения почернения на фотографических негативах, по которым тоже можно измерять блеск светил, применяются разнообразные микрофотометры.

Провожая вас с обсерватории, астроном мог бы вам сказать: «Не зажигайте, пожалуйста, спичек, пока вы не отойдете больше чем на 300 километров от обсерватории, потому что сегодня у нас будут измерять тепло, получаемое от звезд, и прибор будет реагировать на вашу спичку». Если он так скажет, то это будет лишь полушуткой. Что звезды согревают нас очень мало, мы уже давно все знаем по опыту, особенно в морозную ночь. Умудриться измерить подобное ничтожное нагревание Земли звездами — это величайшее достижение современного приборостроения. Действительно, термоэлемент, которым измеряется тепло от звезд, имеет исключительную чувствительность, но, конечно, принимаются все меры к тому, чтобы на прибор не упало случайно никакое постороннее излучение, а потому вы без вреда для науки сможете зажечь спичку не только не отходя на 300 км, а даже не отходя от башни телескопа.

Термоэлемент состоит из спая двух проволочек из разных металлов. Если покрытое сажей место спайки нагревать, то в проволочках возникает электрический ток. Сажей место спайки покрывают, конечно, не для того, чтобы оно пачкалось, а для того, чтобы здесь вся падающая энергия поглощалась и превращалась в тепло. Чтобы убедиться в этом свойстве черной матовой поверхности, какой является сажа, попробуйте летом сменить белую шляпу на черную.

Для измерения тепла, приходящего от звезд, применяют проволочки с поперечным сечением 0,01 мм. Их вес составляет 0,03 мг, и возникающий в них.электрический ток измеряется с точностью до 3•10-11 ампера (1011 означает число, выражаемое единицей с 11-ю нулями, а 10-11 означает единицу, деленную на 1011. «Порядком» какой-либо величины называют приближенное ее значение в такой форме: о числе 3•1011 говорят, что оно порядка 1011, о числе 7•1011, что оно порядка 1012, о числе 3•10-11, что оно порядка 10-11, о числе 7•10-11, что оно порядка 10-10 и т. д)). Только подобным точным прибором можно измерить тепло, приходящее к нам от отдельных ярких звезд. Больше всего его доходит к нам от яркой красной звезды Бетельгейзе в созвездии Ориона: 7,7•10-11 малой калории на квадратный сантиметр за минуту. Собирая с помощью 2.5-метрового вогнутого зеркала это тепло в течение года, мы бы собрали его не больше того, что нужно для нагревания наперстка воды всего лишь на два градуса!

Не хотите ли рассчитать, сколько времени понадобится на то, чтобы таким образом вскипятить чайник?! Впрочем, и не пытайтесь рассчитывать, так как это требует трудного учета потери теплоты чайником за время нагревания при неполной его тепловой изоляции.

В распоряжении астрономов есть способы, позволяющие проверить данные, даваемые термоэлементом, который, впрочем, хорошо зарекомендовал себя при измерении небольших количеств тепловой энергии на Земле.

В скромных пределах в астрономии используется киносъемка, например, для изучения быстрых движений на Солнце. Но в большинстве случаев свет небесных тел слишком слаб, чтобы допускать киносъемку, а изменения в них слишком медленные, чтобы киносъемка имела смысл. Те движения, которые вы видите в астрономических кинофильмах, сняты при помощи макетов — глобусов и шариков, изображающих планеты и звезды. Телевидение же в астрономии стало применяться недавно. Как-то в Москве, прямо из башни обсерватории МГУ, морозной ночью передавалось для всех телезрителей изображение Луны, даваемое большим телескопом. Применяли телевидение также и для научных целей. В Пулковской обсерватории Н. Ф. Купревич по телевизору изучал Луну в инфракрасных — тепловых лучах, испускаемых ею, а в 1965 г. в Крымской обсерватории на экране телевизора, спаренного с телескопом, увидели звезды гораздо более слабые, чем в этот же телескоп можно было видеть или фотографировать. Но техника телевизионной астрономии еще сложна и ее работа недостаточно выверена. Более широко передача изображений по телевидению и с большим успехом, стала применяться на межпланетных автоматических станциях. Так передавались многочисленные изображения Луны и Марса с близкого расстояния и даже панорамы с самой поверхности Луны.

С конца 50-х гг. возникли новые методы изучения небесных светил, с помощью которых исследуют их излучение в областях спектра, раньше недоступных для ученых. Эти методы, или области изучения, стали называть астрономией с разными прилагательными, по образцу того, как еще раньше создали «радиоастрономию». Теперь говорят об астрономии «инфракрасной», «рентгеновской», «баллонной», «спутниковой» и «нейтринной». Распространение исследований на инфракрасную, далекую ультрафиолетовую и рентгеновскую области спектра крайне важно для лучшего понимания природы светил и происходящих в них процессов. Поглощение света нашей атмосферой в этих лучах спектра до сих пор являлось главным препятствием. Теперь фотоумножители, электронно-оптические преобразователи, новые сорта фотопластинок и особые приемники радиации позволили регистрировать инфракрасное излучение светил, особенно далекое, если применять подъем приборов на воздушных шарах-баллонах, аэростатах, стратостатах и высотных ракетах, пользуясь автоматизацией управления ими. Такие способы подъема приборов в верхние слои атмосферы, а тем более установка их на искусственных спутниках Земли и на межпланетных автоматических станциях позволили также заглянуть далеко и в ультрафиолетовую и в рентгеновскую области спектра. Стало возможным изучать и первичные космические лучи высокой энергии.

Ставятся опыты по «ловле» нейтрино — элементарных частиц, испускаемых из недр Солнца и звезд при ядерных реакциях и свободно выходящих из этих недр в Космос. Это вестники процессов в недрах звезд, о природе которых судят пока только по теоретическим расчетам.

Больше всего данных приносит нам спектральный анализ света, идущего от небесных светил. Спектры светил — это паспорта, характеризующие их физическую и химическую природу и многие другие их свойства. Что такое спектр и как он выглядит — коротко не скажешь, об этом говорит весь следующий параграф. Не усвоив хорошо принципов спектрального анализа, нельзя понять большинство выводов астрофизики, т. е. физики небесных тел.

Спектрограф и спектры

Лучи света — посланцы своего хозяина, источника света. Разложенные в спектр, они осведомляют нас о физическом состоянии светила, пославшего эти лучи. Оно может находиться сколь угодно далеко от нас, лишь бы от него мы получали достаточно света, чтобы его краен, спектр можно было сфотографировать. Такая фотография спектра, называемая спектрограммой, получается с помощью спектрографа.

Устройство спектрографа изображено на рис. 15. Главной его частью является трехгранная призма из прозрачного вещества, обычно из стекла, преломляющая лучи света различной длины волны (различного цвета) в различной степени — тем сильнее, чем длина волны короче. Так, зеленые лучи преломляются и отклоняются к основанию призмы сильнее, чем красные, а фиолетовые лучи сильнее, чем зеленые. Свет распространяется волнами, и в зависимости от того, какова его длина волны, мы получим впечатление того или иного цвета. Длину волны выражают в десятимиллионных долях миллиметра, называемых ангстремами. Длина волны зеленого цвета составляет около 5000 ангстрем (или около пяти десятитысячных миллиметра). Всякое хотя бы ничтожно малое изменение длины волны соответствует изменению цвета (хотя бы ничтожно малому и незаметному для глаза). Некоторые источники света посылают свет только одной определенной длины волны, другие посылают свет, состоящий из лучей нескольких определенных длин волн, из которых одни лучи могут быть яркими, другие слабыми, третьи могут быть интенсивными, но невидимыми глазу. Например, инфракрасные или тепловые лучи, имеющие очень большую длину волны, невидимы глазом. Невидимы глазом также ультрафиолетовые лучи, обладающие длиной волны короче примерно 4000 ангстрем, и рентгеновские лучи — несравненно более коротковолновые, но так же как и ультрафиолетовые, действующие на фотографическую пластинку.

Рис. 15. Схема устройства спектрографа

Рентгеновские и «далекие» ультрафиолетовые лучи небесных светил до нас не доходят — их поглощает и задерживает в нашей атмосфере слой озона (газа, молекулы которого состоят из трех атомов кислорода).

За инфракрасными лучами лежат в спектре еще более длинноволновые лучи, с помощью которых осуществляется радиосвязь. Все лучи спектра от радиоволн и до рентгеновских лучей представляют собой электромагнитные волны.

В обычном спектральном анализе изучаются лучи спектра от инфракрасных до ультрафиолетовых. Из этой области только средняя часть видна глазом. Сильнее всего действуют на глаз желтые и зеленые лучи, поэтому яркость того или другого участка спектра, как она видна глазом, еще не характеризует энергию излучения света в данной длине волны, — яркость для глаза зависит и от энергии, заключенной в данном месте спектра, и от чувствительности глаза к ней. То же касается и фотопластинки.

Рис. 16. Отклонение призмой лучей с разной длиной волны и полный спектр электромагнитных волн

Если вдоль спектра двигать узкую полоску покрытого сажей металла, то она будет поглощать всю падающую на нее энергию и превращать ее в тепло. В зависимости от степени нагревания меняется электропроводность металла, и потому, измеряя ток, пропускаемый через это мешающееся электрическое сопротивление, можно выяснить истинное распределение энергии вдоль всего спектра. Прибор такого рода называется болометром.

Цвет источника света зависит от того, лучи каких длин волн и с какой интенсивностью он испускает. Например, раскаленные пары натрия почти всю свою энергию испускают в длине волны, соответствующей желтому цвету. Поэтому цвет паров натрия желтый. Пары ртути большую часть своей энергии испускают в длинах волн, соответствующих зеленому и густофиолетовому цвету. Поэтому цвет паров ртути представляет собой весьма своеобразную смесь зеленого и фиолетового.

Некоторые источники света, например, нить электрической лампы, излучают свет всевозможных длин волн (всех без исключения, без перерыва), поэтому спектр их лучей называется непрерывным. Цвет таких источников света зависит от распределения энергии по разным длинам волн, т. е. от ее распределения вдоль спектра. Если, например, больше всего энергии испускается в красных лучах, то цвет источника света красный. Если больше всего энергии испускается в ультрафиолетовых лучах, невидимых глазу, то цвет источника определяется самым ярким местом в видимой части непрерывного спектра или сочетанием цветов самых ярких мест. Известно, например, что белый цвет создается как смесью всех цветов, взятых в определенной пропорции, так и определенной смесью двух цветов, например, желтого и синего, красного и голубого (это смешение света разных цветов надо отличать от смешения красок в живописи).

Но вернемся к рис. 15. Чтобы разложить свет на его составные части, на призму надо направить под определенным углом (в зависимости от свойств данной призмы) пучок параллельных друг другу лучей. Это достигается коллиматором, который представляет собой трубку с объективом, обращенным к призме, и с короткой щелью на другом ее конце. Щель параллельна ребру призмы и находится в том месте, где лучи, упавшие на объектив со стороны призмы параллельным пучком, собрались бы в одну точку. Эта точка — главный фокус объектива. По известному в оптике «свойству обратимости» лучи, посланные такой освещенной щелью, выйдут из объектива и попадут на призму почти параллельным пучком.

На щели спектрографа объектив телескопа дает почти точечное изображение звезды или протяженное изображение другого небесного светила, например, планеты. В самом же спектрографе призма отклоняет к своему основанию лучи тем сильнее, чем короче их длина волны. Эти лучи падают на объектив фотографической камеры под разными углами. Объектив камеры дает на фотопластинке изображение освещенной щели в том или другом ее месте, в зависимости от угла падения на него лучей. Последний зависит, как мы видели, от длины волны. Поэтому на фотопластинке получается спектр источника света в виде полоски, состоящей из ряда параллельных друг другу линий — изображений щели, из которых каждое образовано лучами определенной длины волны (из тех, какие испускает источник). Эта полоска, состоящая из ряда линий, и есть спектр. По месту, занимаемому линией в спектре, мы можем определить длину волны лучей, которые ее образовали. Для краткости говорят об определении длины волны самих линий в спектре. Если спектр содержит все длины волн — сплошь без перерыва, то сливающиеся друг с другом бесчисленные изображения щели образуют непрерывный спектр в виде цветной полоски. Он содержит все цвета радуги (вернее было бы сказать наоборот, т. е., что радуга содержит все цвета спектра). Источники света, испускающие только отдельные длины волн, дают, следовательно, спектр в виде ряда отдельных линий. Это — линейчатый спектр. Когда линии спектра светлые, то это спектр излучения. Но бывает, что перед источником непрерывного спектра находится вещество, поглощающее свет в отдельных, определенных длинах волн. Тогда изъятие энергии определенных длин волн из непрерывного спектра вызовет появление в нем мест, лишенных света, т. е. тёмных линий. Это будет спектр поглощения, тоже линейчатый.

Спектральная грамота

Узнаем же, как читают паспорта светил, как читают их спектры, изучим спектральную грамоту.

Существуют, как мы видели, три вида спектров — три вида паспортов источников света: непрерывный спектр, линейчатый спектр излучения (короче, спектр излучения) и линейчатый спектр поглощения (непременно на фоне непрерывного спектра и называемый коротко спектром поглощения). Уже общий вид спектра говорит нам о природе свечения источника. Из опыта известно, что непрерывный спектр дают или твердые и жидкие раскаленные вещества или массы газа, в которых очень много свободных электронов — мельчайших частиц электричества. Такой спектр может дать и небольшой слой чрезвычайно горячего и плотного газа и чрезвычайно толстый слой более разреженного газа.

Таким образом, непрерывные спектры дают, с одной стороны, нить электрической лампы и расплавленная сталь, с другой стороны, — газы, составляющие поверхностный слой Солнца и звезд. В лаборатории удавалось маленькие проволочки (пережигая их сильным электрическим током) превратить в газ, содержащий множество электронов, и он давал в момент испарения непрерывный спектр.

Атом — мельчайший представитель какого-нибудь химического элемента, т. е. вещества, не могущего быть химически разложенным на составные части, тем не менее очень сложен. Он является сложной системой частиц. Атомы разных химических элементов содержат разное число частиц и построены по-разному. Разрушать их или перестраивать методами химии нельзя. Раньше перестраивать их удавалось лишь природе, но теперь удается перестраивать атомы методами физики в лаборатории. Можно представить себе атом состоящим из ядра и вращающихся вокруг него электронов. У ядра определенный вес и определенный положительный электрический заряд, равный сумме отрицательных электрических зарядов электронов атома, а заряд каждого электрона одинаков. Заряд ядра определяет химические свойства атома. Столкнувшись с другим атомом, электроном или с мельчайшей частицей света — квантом, иначе — фотоном, наш атом может потерять один из своих электронов. Он приобретает тогда единичный положительный заряд, не уравновешиваемый противоположным зарядом электрона, который покинул своего хозяина. Он становится тогда ионом, или ионизованным атомом. Если оторвать у атома и второй электрон, то он становится дважды ионизованным атомом с двойным положительным зарядом.

От подобных повреждений и убытка при столкновениях атомы не чувствуют себя хуже, однако непрерывно лелеют надежду восстановить свое нарушенное «хозяйство» и пополнить его захватом свободного электрона. Электроны же, освобожденные от своей «крепостной зависимости», называются свободными, но им постоянно угрожает новый плен, так как их отрицательный заряд притягивается положительным зарядом ионов. Горе медленно летающим свободным электронам! Их легко захватить в плен. Быстрые же электроны между тем безопасно шныряют среди ионов, и ясно, что чем реже атомное население в единице объема (чем разреженнее газ), тем легче им ускользать от плена, сохраняя свободу, и поддерживать этим высокую ионизацию газа. А чем больше частиц толчется на одном месте, тем чаще они могут и столкнуться и снова соединиться.

Рис. 17. Распределение энергии в спектре абсолютно черного тела при разных температурах и в спектре Солнца. Наклонная прерывистая линия указывает смещение максимума интенсивности с повышением температуры в сторону коротких волн

Из физики известно, что чем выше температура газа, тем быстрее носятся его частицы, тем энергичнее и чаще их столкновения и тем большая доля его атомов ионизуется. Быстрота движения частиц определяет, как часто происходят различные столкновения; основываясь на этом, теория может наперед сказать, каково будет распределение энергии вдоль непрерывного спектра при данной температуре. Лучше всего теоретически изучено излучение абсолютно черного тела, которое так называется потому, что оно способно поглощать всю падающую на него энергию. Абсолютно черное тело обладает не только наибольшей поглощающей, но и наибольшей излучательной способностью при данной температуре. Излучение нити электрической лампочки или внутренности раскаленной печи очень походит на излучение черного тела. Можно создать искусственное тело, еще более похожее на абсолютно черное тело, можно его нагреть и убедиться, как это делают физики, в том, что распределение энергии в его спектре в зависимости от температуры соответствует теории. Оказалось, что звезды и Солнце обладают почти такими же свойствами поглощения и излучения, как черное тело, и потому по распределению энергии в их спектре можно определить их температуру, о чем мы расскажем дальше. Итак, н? смущайтесь тем, что Солнце принимают за черное тело, да к тому же абсолютно черное! Черный уголь сохраняет свои свойства абсолютно черного тела и тогда, когда он раскален и ослепительно светит.

Но вернемся опять к атомам, которые можно представлять себе для наглядности как копию Солнечной системы в миниатюре. Однако электроны в атоме могут занимать лишь определенные орбиты и, в отличие от планет в Солнечной системе, могут скачками переходить с одной из них на другую. Энергия атома определяется тем, по каким орбитам движутся его электроны, причем внутренние, ближайшие к ядру орбиты соответствуют наименьшему запасу энергии.

Чтобы перевести электрон в атоме на орбиту большего радиуса, надо затратить энергию, а эту энергию ему может сообщить налетевший на него квант света или другая движущаяся частица. Чем больше энергии она ему сообщит столкновением, тем дальше от ядра окажется электрон, и при некоторой достаточно большой энергии оторвется от него совсем, т. е. улетит прочь, и атом будет ионизован.

Однако долго разгуливать по более далекой от ядра орбите попавшему на нее электрону не приходится. Неумолимый закон природы таков, что через какую-нибудь стомиллионную долю секунды электрон снова соскочит на орбиту, более близкую к ядру, и отдаст при этом в форме излучения часть своей энергии. Эта энергия равна разности энергий электрона, соответствующих внешней и внутренней орбите. Для разных атомов и для комбинации разных орбит при перескоке электрона в одном атоме эта энергия различна. Упомянутую разность энергии атом отдает в пространство в виде одной элементарной порции или кванта света, а определенной энергии кванта соответствует определенная длина волны, определенный цвет. Так, атом водорода может излучить квант красного света, квант синего света и т. д. Атом кадмия тоже может излучить квант красного света, но с несколько иной длиной волны, потому что разности энергии между разными орбитами, доступными для его электронов, несколько иные, чем в атоме водорода. Строение электронных оболочек ионизованных атомов, т. е. расположение в них орбит электронов, иное, чем у неионизованных (нейтральных атомов), поэтому и кванты, испускаемые ими, иные, чем у нейтральных атомов. Все же можно для наглядности представить так, как если бы при каждом перескоке электрона на орбиту, более близкую к ядру, издавался бы короткий звук совершенно определенного тона. Совокупность множества атомов в водородном газе (не очень плотном) излучает кванты всех величин, какие для него доступны, т. е. излучаемый водородом спектр состоит из целого ряда характерных для него отдельных длин волн, из определенных спектральных линий. То же касается атомов других химических элементов и комбинаций атомов — молекул. Отсюда получается возможность по спектру определить химический состав газа, излучающего свет, что из опытов было известно уже давно, но лишь не так давно было полностью объяснено в связи с развитием теории строения самих атомов.

Атом похож на рояль, могущий издавать только определенные звуки, только определенные ноты, тоже, кстати сказать, соответствующие определенным длинам звуковых волн. У каждого типа атомов свой набор «нот» — испускаемых им спектральных линий. Исследователь спектров не может, как настройщик, менять звучание «нот» атомов, но он может лучше, чем настройщик, замечать различие в двух почти сходных нотах и определять по ним тип своего атома — рояля. Спектры ионизованных атомов иные, чем спектры нейтральных атомов. Если же от ядра оторваны все его электроны, то атом вообще теряет способность излучать, так как у него не осталось больше электронов, которые перескакивали бы с орбиты на орбиту, и энергия его не меняется. Он как бы превращается из рояля в простую деревяшку без струн.

Рис. 18. Наиболее характерные линии поглощения в спектре Солнца. По традиции их обозначают большими и малыми латинскими буквами. Линии с и F принадлежат водороду, линия D — натрию, Е — железу, группа линий b — магнию, G — железу, титану и кальцию, Н и К — кальцию. Линии А, а и В образуются не на Солнце; они носят название теллурических и возникают в земной атмосфере. Линии А и В принадлежат земному кислороду, линия а — парам воды

Так по длинам волн линий в спектрах производится качественный спектральный анализ. Он применяется с одинаковым успехом как для небесных светил, так и в многочисленных областях земной практики: в физике, химии, геологии, биологии, медицине и металлургии.

Разреженный газ испускает свойственные ему яркие линии спектра, издает свой набор световых нот, своего рода мелодию, вследствие возбуждения его атомов столкновениями с другими частичками вещества или с фотонами. Как в мелодию могут входить аккорды, так и в линейчатый спектр атома входят так называемые мультиплеты, или серии линий, появляющихся обычно вместе. Например, такими аккордами являются пара желтых линий в спектре натрия и вся серия линий в спектре водорода. Они появляются всегда вместе, когда, по разным причинам, другие группы линий в спектре того же атома могут и отсутствовать. Однако тот же газ ведет себя иначе, если поместить за ним более горячий источник непрерывного спектра.

Будучи холоднее, он поглощает падающую на него извне энергию из области непрерывного спектра. Его атомы способны поглощать только определенные длины волн спектра, а не все. Поэтому из состава непрерывного спектра ослабляются поглощением только волны тех длин, которые атом при иных условиях сам бы стал испускать. Газ вызывает в непрерывном спектре при поглощении темные линии, в точности соответствующие по длине волны линиям, которые для него характерны при излучении. Спектр поглощения и спектр излучения атома — это как бы негатив и позитив одного и того же изображения в фотографии.

Конечно, поглотив энергию и возбудясь до состояния с большей энергией, атом, как мы уже знаем, почти мгновенно должен вернуть обратно свое приобретение. Однако квант света излучается атомом куда попало. Многочисленные атомы, получив энергию из одного определенного направления (оттуда, где находится источник непрерывного спектра), разбрасывают ее по разным направлениям. В результате, в направлении к наблюдателю, смотрящему на источник непрерывного спектра сквозь разреженный газ, дойдет не вся энергия, заключенная в этом непрерывном спектре, а лишь ее часть. В соответствующей длине волны энергия придет ослабленной, т. е. мы увидим темную линию в спектре. Описанная картина называется рассеянием света атомами.

Можно себе это представить так, что кванты, излучаемые в непрерывном спектре, представляют собой град всевозможных монет, кидаемых вам в игре стоящей вдалеке толпой. Но представьте, что между вами и толпой затесалось несколько мальчишек, которые из озорства перехватывают из этих монет, например, только пятачки и двугривенные. Поймав эти монетки, они швыряют их куда попало. Ясно, что в наборе монет, долетевшем до вас, пятачков и двугривенных будет недоставать, хотя часть их все же долетит до вас.

Чем больше поглощающих атомов на пути луча непрерывного спектра, тем больше энергии поглощается и тем темнее, или, как говорят, интенсивнее, темная линия спектра.

Действительно, чем больше мальчишек «не по правилам» ввяжется в игру с монетами, тем больший убыток в пятачках и двугривенных вы потерпите. Зная поглощательную способность атомов (зная ловкость мальчишек в поимке монет), вы можете подсчитать число поглощающих атомов (число мальчишек) на пути луча света (в летящем потоке монет). Так становится возможным уже количественный химический анализ на основании интенсивности линий в спектре поглощения.

В астрономии источниками непрерывного спектра являются раскаленные поверхности звезд и Солнца, состоящие из огромных масс ионизованного газа. Их окружают тоже раскаленные, но все же более холодные газовые атмосферы. Рассеяние света в этих атмосферах производит темные линии в спектрах звезд и Солнца. По этим линиям можно произвести качественный, а по их интенсивнсстям и количественный химический анализ атмосфер звезд и нашего Солнца.

Если вспомнить, что атмосферы звезд состоят из многих химических элементов, из многих сортов атомов, из которых каждый сорт дает свою серию линий, как бы исполняет свою мелодию, состоящую из разных аккордов, то станет ясно, насколько хорошим музыкальным критиком должен быть исследователь спектров, чтобы разобраться в какофонии спектральных линий, в основательной мешанине нот, принадлежащих разным ариям и аккордам. Бывает, что при отождествлении линий спектров звезд какая-нибудь нота и фальшивит. Тогда приходится биться, чтобы установить, какой мелодии и какому роялю (атому) она на самом деле принадлежит…

Остается рассказать, как спектры разоблачают движение небесных светил. Вспомним принцип Доплера, знакомый нам из школьной физики: если источник колебаний движется относительно нас, то длина волны этих колебаний, как они воспринимаются нами, меняется. При сближении длина волны укорачивается, а при удалении увеличивается. В случае звуковых колебаний постоянно встречающийся пример этого дает свисток мчащегося локомотива. Пока он несется к нам, звук его свистка выше и резко понижается, когда локомотив, обдав нас паром, начнет быстро удаляться.

Рис. 19. Смещение линий в спектре (поглощения) звезды 8 Андромеды (средний спектр), свидетельствующее о приближении звезды к нам со скоростью 100 км/сек. Сверху и снизу — так называемые спектры сравнения, полученные от лабораторного источника света

В случае световых Колебаний меняются длины волн в спектре. Однако даже при скоростях в сотни километров в секунду изменений цвета в спектре заметить нельзя, — так мало изменение длин волн. Лишь в «научном» анекдоте водитель автомашины может уверять, что красный свет светофора показался ему зеленым оттого, что он несся очень быстро навстречу светофору. Для этого ему пришлось бы нестись со скоростью более 60 000 км в секунду! Можно заметить лишь сдвиг линий в спектре — изменение их длины волны . Согласно принципу Доплера скорость движения источника относительно нас

=с/

где — нормальная длина волны линии спектра, а с — скорость света, равная 300 000 км/сек.

При сближении источника света и наблюдателя линии спектра смещаются к фиолетовому концу спектра и к красному концу — при их взаимном удалении.

Что все это в самом деле так, доказал около полувека назад знаменитый русский астрофизик А. А. Белопольский. В Пулковской обсерватории он установил в своей лаборатории ряд быстро вращающихся зеркал, в которых отражался источник света так, что его изображение двигалось со скоростью, приближающейся к тем скоростям движения небесных тел, при которых только и можно с уверенностью заметить сдвиг линий в спектре, согласно принципу Доплера. С тех пор сомнения в верности описанного выше принципа отпали.

Радиоизлучение и «уши» астрономов — радиотелескопы

Всякое нагретое тело испускает электромагнитные волны — ультрафиолетовые, видимые, тепловые и радиоволны, но в разной пропорции, в зависимости от свойства тела и его температуры. Мы уже говорили, что для так называемого абсолютно черного тела — идеального излучателя Планк вывел формулу, показывающую, как будет распределяться энергия в его полном спектре в зависимости от температуры.

В нагретом теле происходит хаотическое тепловое движение частиц. Кинетическая энергия, т. е. энергия движения частиц при их столкновениях, переходит в энергию электрического и магнитного поля и выход электромагнитной энергии растет с ростом быстроты движений, которой и определяется температура. Солнце, звезды и облака межзвездного разреженного газа испускают тепловое радиоизлучение, которое мы можем измерять. Но есть и другие причины радиоизлучения.

Электрически заряженная частица при перемене скорости создает переменное электромагнитное поле, т. е. излучает энергию. Перемену скорости электрона, а именно торможение, производит протон, когда он притягивает пролетающий мимо него электрон.

Мощность этого излучения крайне мала, но в газах космического пространства электронов и протонов бывает множество и в сумме они иногда дают значительное радиоизлучение. Изменение скорости электронов и протонов может происходить и под действием магнитного поля. Оно заставляет электрон двигаться по спирали, и испытываемое им при этом ускорение порождает электромагнитное излучение, в частности, радиоизлучение. Это — процесс магнитотормозного излучения, и он также встречается в Космосе, где есть магнитные поля. В случае, когда электроны несутся со скоростью, близкой к скорости света, в магнитном поле тоже возникает магнитотормозное излучение, но с гораздо большей энергией. Оно называется синхротронным по названию применяемого в ядерной физике сооружения — ускорителя частиц — синхротрона, где такое излучение впервые наблюдалось. Электроны же, скорость которых близка к скорости света, называются релятивистскими. Синхротронное излучение тоже обнаружено в Космосе. Все перечисленные выше виды радиоизлучения образуют в радиодиапазоне частот такой же непрерывный, сплошной спектр, какой наблюдается в спектральном анализе. К сожалению, сплошное радиоизлучение небесных светил не доходит до нас целиком из-за его поглощения в земной атмосфере. Точнее, радиоволны поглощаются верхними наэлектризованными слоями атмосферы, называемыми ионосферой.

Окно прозрачности в ионосфере оставляет доступными для излучения длины волн от 16-20 м до 1г/4 см. Микрорадиоволны длиною около 1 мм проходят через атмосферу уже плохо. На этот раз им мешают не наэлектризованные слои воздуха, а водяной пар в атмосфере. Такие волны примыкают к тепловым волнам, а они, как известно, поглощаются водой очень сильно. Вот через это «радиоокно» мы только и выглядываем, если хотите — прислушиваемся, к тому, что делается в радиодиапазоне за пределами земной атмосферы. Только в этом диапазоне возможна и посылка радиосигналов с Земли в Космос. С межпланетных космических кораблей за пределами земной атмосферы теперь стал возможен прием и передача радиосигналов на любых частотах, но пока космические корабли еще не могут брать с собой на борт такую мощную радиоаппаратуру и такие запасы энергопитания, которые нужны для изучения очень слабого или очень далекого космического радиоизлучения.

Частота, на которой ведется широковещательная передача, в радиоприемнике преобразуется в звуковую частоту, в шум. Когда есть много помех, эти посторонние шумы заглушают интересующий нас концерт, особенно, если он передается слабой станцией или очень издалека. И в радиоастрономии говорят о шумах. Эти шумы создаются множеством процессов в Космосе; ведь пространство между небесными телами, называемое безвоздушным, не пусто. В нем носятся заряженные электрические частицы, в нем есть магнитные поля. Шумят и наша атмосфера и даже сам радиоприемник. Бороться с этими шумами и выделять из них нужное нам радиоизлучение какого-либо небесного тела — в этом и состоит основная задача радиоастронома. С усилением чувствительности радиоприемника возрастает, вообще говоря, и шум.

Запись радиоизлучения сейчас делается автоматически при помощи самописцев. Перо прибора на движущейся бумажной ленте записывает «уровень», т. е. силу поступающего сигнала. Шум изображается зубчатой полоской, а сигнал — пиком над нею, тем белее высоким, чем сигнал сильнее. Обработка таких записей — сложное дело. В частности, приходится учитывать особенности радиоприема. Часто прибор реагирует не только на тот излучатель, на который он направлен, но и на некоторые излучатели, расположенные в стороне, хотя и с меньшей чувствительностью. Так астрономы «слушают» радио-шумы и радиоизлучение. Антенна радиотелескопа — как бы ухо астронома.

Чем больше «ухо» радиотелескопа, чем больше его антенна, тем больше энергии, идущей от далеких светил, она улавливает. Антенны радиотелескопов бывают очень различных конструкций. Больше всего похож на оптический телескоп-рефлектор радиотелескоп, имеющий главной частью такое же зеркало, но металлическое. Это гигантская чаша, в фокусе которой, где собирается излучение, помещен облучатель — небольшая антенна. От нее энергия по волноводу передается в помещение, где находится приемная аппаратура. Зеркало направляется на желаемый участок неба из этого помещения путем нажатия нужных кнопок, управляющих электрически движением телескопа. Отличие радиотелескопа от оптического телескопа состоит в том, что облака для него не помеха. Радиоволны проходят и через них. Облака не прерывают наблюдений, но как утомительны непрерывные наблюдения в течение долгой зимней ночи!

Рис. 20. Радиотелескоп обсерватории Джодрелл Бэнк (Англия) диаметром 76 м

Как известно, для того чтобы зеркало собрало лучи как можно точнее в фокус, надо, чтобы отклонения его поверхности от правильной формы не превышали длины волны принимаемого излучения. Длина световых волн меньше одного микрона, а длина радиоволн — сантиметры и метры. Поэтому зеркало радиотелескопа можно делать с гораздо меньшей точностью, чем оптическое зеркало, а изготовлять большие радиотелескопы легче. Это важно в двух отношениях.

Во-первых, они собирают больше энергии.

Во-вторых, у -больших радиотешеекбпов по сравнению с малыми разрешающая способность, т. е. возможность различить но отделшмстш два источника радиоизлучения на малом угловом расстоянии друг от друга, больше. Но разрешающая сила падает с увеличением длины волны. Однако сейчас в радиоастрономии достигают иногда точности определения положения или размера источника даже большей, чем при наилучших оптических наблюдениях. Большое сплошное зеркало весит очень много. К счастью, как известно, мелкие царапины на зеркале, если они раз в 10 меньше, чем длина волны, не мешают. Поэтому зеркало радиотелескопа, предназначенного для метровых радиоволн, может быть без вреда продырявлено отверстиями до 10 см диаметром, следовательно, можно сделать зеркало не сплошным, а в виде металлической сетки. Это облегчает его вес, облегчает изготовление и значительно уменьшает его стоимость.

Радиотелескопы с зеркалом достигли поэтому уже за немногие годы диаметра почти в сто метров(!). Но зато и весят они сотни тонн, даже если они решетчатые. Понятно, что при таких размерах радио-телескопы помещаются не в башне, а прямо на открытом месте. Чем больше и тяжелее телескоп, тем труднее его поворачивать, да еще с нужной точностью, и следить им за суточным вращением неба. Поэтому иногда идут на ограничение подвижности телескопа, устанавливая его так, что он может наблюдать небо только вблизи меридиана или даже только вблизи зенита.

Рис. 21. Радиотелескоп Аресибо с неподвижным зеркалом на острове Пуэрто-Рико

Какой сейчас радиотелескоп является самым лучшим и большим? Я на это затрудняюсь ответить.

Во-первых, все время строятся новые, все большие телескопы, и прежде чем я допишу эту книгу, прежде чем она будет издана и попадет вам в руки, положение изменится.

Во-вторых, радиотелескопы очень различны. У них разные возможности движения, некоторые велики, но изготовлены в расчете на прием только очень длинных волн, а другие более универсальны. Самое большое зеркало радиотелескопа совсем неподвижно и установлено на дне жерла потухшего вулкана на острове Пуэрто-Рико. Его диаметр достигает 300 м! Наводка его на светило, возможная только вблизи зенита, осуществляется перемещением кабины, подвешенной на тросах между мачтами на высоте 135 т.

Рис. 22. Антенна радиолокатора, с помощью которой люди крикнули Луне ‘ау’

Есть радиотелескопы в виде множества согласованных друг с другом малых зеркал. В Пулковской

обсерватории радиотелескоп имеет вид дуги с концами, отстоящими друг от друга на 120 м. В СССР установлен также радиотелескоп из системы зеркал, расположенных по дуге окружности диаметром 600 м. Есть радиотелескопы (интерферометры) в виде креста со сторонами, тянущимися на сотни метров, и телескопы-антенны в виде плоской рамы с укрепленными на ней многочисленными стержнями диполями. Увидев такие гигантские сооружения, «ни на что не похожие», вы даже не догадаетесь, что это радиотелескопы. Наибольшей точности интероферометрический метод достигает тогда, когда радионаблюденргя объекта одновременно ведут два больших радиотелескопа, удаленных друг от друга… на диаметр земного шара. Большее раздвижение радиотелескопов, больший базис осуществить пока невозможно. Описанным способом удается измерять углы на небе порядка О»,001 (!), что недоступно оптическим телескопам.

Итак, радиотехника тоже связывает Землю со звездным миром. Говоря словами поэта:

«Морозной ночи тишина,

Лесной завороженный воздух,

Земля в хрусталь погружена,

С ней разговаривают звезды.

Пространств бездонных светляки,

Светила вечной сказки сказок,

Так высоки, так далеки

Над ветками берез и вязов…

Им говорит Земля про нас

И, под натянутой антенной,

Стоишь, не опуская глаз,

На очной ставке со Вселенной».

(А. Коваленков)

Осязание астрономов: радиолокатор и лазер (можно ли прощупать планеты и осветить Луну?)

Важный метод, который с каждым годом приносит нам все новые возможности, — это радиолокация — определение положения (латинское locus означает «место») предмета, отражающего радиоволны, которые мы к нему посылаем. Радиолокация развилась во время второй мировой войны, но после этого нашла свое применение и в одной из самых мирных наук — астрономии.

Как известно, при помощи радиотехнических средств можно собрать радиоволны и послать их почти параллельным пучком, как, например, вогнутое зеркало прожектора посылает узкий луч света от источника, помещенного в его фокусе. В узком пучке энергия электромагнитных волн рассеивается мало и может достигнуть удаленного объекта, имея достаточную мощность для того, чтобы отраженные лучи вернулись в пункт подачи сигнала с энергией, допускающей ее регистрацию радиоприемником. При этом радиоволны посылаются очень короткими, но мощными импульсами. Определяя направление, из которого к нам приходит сильно ослабленный рассеянием отраженный сигнал, мы узнаем положение объекта на небесном своде. Измеряя же точной аппаратурой время от момента посылки сигнала до момента прихода отраженного сигнала, мы узнаем и расстояние до предмета, так как радиоволны подобно свету распространяются со скоростью 300 000км/сек.

После радиолокации кораблей и самолетов во время войны подумали: «а почему бы не применить этот метод и к Луне?» Правда, Луна и так видна каждому, а расстояние до нее и ее видимое место на небе в любой момент давно известно из астрономических измерений и вычислений. Но было любопытно проверить это радиотехническим методом, а может быть, и уточнить, если очень точно определить время пробега радиоволны туда и обратно: оно должно быть немного более двух секунд.

Расчеты возможности радиолокации Луны были сделаны впервые в СССР еще в 1928 г. Л. И. Мандельштамом и Н. Д. Папалекси (как видим, и тут нужна теория!). Для радиолокации Луны вследствие потерь энергии на таком длинном пути нужна большая мощность радиопередатчика, и осуществлен такой опыт был лишь в 1946 г. в США и Венгрии.

Увеличение мощности радиопередатчиков и чувствительности принимающей радиоаппаратуры позволило за короткий срок «коснуться» радиолучом все более далеких небесных тел. Уже в 1964 г. была осуществлена в СССР (под руководством академика В. А. Котельникова), а также в Англии и США радиолокация планет Венеры, Меркурия, Марса и, наконец, более далеких от нас Юпитера и Сатурна.

Особенно большое значение имела радиолокация Венеры, позволившая определить расстояние до нее во время наблюдений и вычислить отсюда большую полуось ее орбиты с большей точностью, чем это удавалось сделать прежде астрономическими методами. Это дало более точное знание основной нашей «измерительной линейки» — расстояния от Земли до Солнца. Оно называется астрономической единицей расстояний (сокращенно а. е.), так как в этих единицах мы измеряем все расстояния во Вселенной. И раньше астрономы точнее всего определяли расстояние до Солнца, измеряя непосредственно расстояние до какого-либо как можно более близкого к нам небесного тела.

Расстояние же от Земли до Солнца вычисляли отсюда, пользуясь тем, что большие полуоси орбит всех спутников Солнца связаны третьим законом Кеплера с периодами их обращения, определяемыми из наблюдений очень точно.

Теперь принятое значение астрономической единицы составляет 149 600 000 км.

Но возможности применения радиолокаторов оказались шире, чем просто определение расстояния между центрами Земли и планет. При достаточно узком пучке падающих радиоволн и при достаточной точности определения времени прохождения радиосигнала можно измерять расстояние до разных точек на поверхности планеты.

— Тем самым можно изучить ее рельеф — высоту гор, расположение низменностей и т. д., что особенно важно для планет, поверхность которых скрыта от нас облаками, плавающими в их атмосферах.

Характер сигнала, отраженного от планеты, зависит от степени гладкости ее поверхности. Если поверхность планеты гладкая, то, отражая сходно с зеркалом в нашу сторону, она отразит радиоволны только центральной частью обращенного к нам полушария. Отраженный сигнал будет иметь всплеск. Все видимое полушарие планеты отразит волны к радиолокатору лишь тогда, когда посланная радиоволна везде упадет на склоны гор, перпендикулярные к направлению ее падения. Тогда отраженный сигнал «размажется» во времени. Так можно оценивать и сравнивать среднюю степень гладкости различных планет. Кроме этого, радиолокатор позволяет… установить вращение планет вокруг оси.

Если планета вращается (но если ее ось не направлена при этом на наблюдателя!), то один ее «край» к нам приближается, а другой удаляется. По закону Доплера длина электромагнитной волны, идущей от этих краев, должна измениться: в первом случае уменьшиться, во втором — увеличиться. Длина волны, отраженной от центра, не изменится. В результате «ширина» отраженного сигнала, как интервал длин волн, или частот, будет шире, чем ширина посланного сигнала. Сигнал «размажется» по частоте и тем больше, чем быстрее линейная скорость вращения планеты. Так можно установить линейную скорость вращения, а зная размер планеты, можно вычислить и период ее вращения. Этим способом и удалось окончательно установить крайне медленное вращение Меркурия и Венеры. Прежние способы зарисовки пятен на их поверхности и спектральные методы были ненадежны.

Наконец, радиолокатор позволяет определять расстояния до «падающих звезд» — метеоров — и их скорость. Но об этом мы поговорим позднее.

Можно ли осветить Луну? Освещать Луну в полнолуние, конечно, незачем, она и так сама нам светит. Но можно ли осветить хотя бы кусочек ее неосвещенной стороны в новолуние? Ведь до Луны далековато? Оказывается, что осветить Луну теперь возможно, правда, не всю Луну, а только маленький кусочек ее и, конечно, не прожектором, а лазером. Лазер — это оптический квантовый генератор. Он в состоянии аккумулировать свет и превращаться как бы в световую бомбу, которая может затем мгновенно разрядиться и испустить свет в одном направлении. В газовом лазере используется баллон со смесью газов. Если добиться того, чтобы большинство атомов или молекул газа пришло в возбужденное состояние, то один возбужденный атом при возвращении в нормальное состояние вынудит разрядиться и другие атомы, так что создается лавинный процесс. Это вынужденное излучение распространится в ту же сторону, с которой падал вынуждающий свет. Лазеры уже приобрели многочисленные научные и технические применения. При помощи больших телескопов свет лазера удалось послать и на некоторые точки неосвещенной части Луны и осветить их настолько сильно, чтобы это стало заметно в телескоп.

В 1970 г. самоходная советская лаборатория «Луноход-1» несла на себе французский лазерный отражатель, состоящий из серии посеребренных кварцевых призм. Лазерные сигналы, отраженные от них, принимались обсерваториями, находящимися во Франции и в Крыму. Лазерная локация Луны, при ее большой точности, позволит изучать дрейф земных континентов, движение земных полюсов и ряд вопросов космической геодезии и небесной механики. Световые сигналы, посылаемые лазером с вездехода, ползающего по ночной части Луны, позволят следить за ним с Земли (обычный прожектор был бы невидим).

Ловля лучей высоких энергий

Земная атмосфера на наше счастье задерживает губительные для жизни лучи высоких энергий, приходящие на Землю извне. Чем короче длина волны, тем большую энергию несут с собой кванты электромагнитного излучения. Такими являются, в частности, рентгеновские лучи, обладающие, как вы знаете, огромной проницающей энергией. Однако и они на длинном пути в земной атмосфере теряют свою энергию при столкновениях с молекулами и атомами и, по крайней мере в своем первоначальном виде, до поверхности Земли не доходят. Между тем они представляют громадный интерес, так как связаны с внутриатомными процессами, и изучение их эмиссии помогает понять процессы в излучающих их телах, вскрыть глубже их природу. Еще более коротковолновые лучи, несущие еще больше энергии, выделяются, например, при радиоактивном распаде. Они называются гамма-лучами.

В 1962 г. счетчик квантов таких лучей, установленный на высотной ракете, обнаружил рентгеновский источник в созвездии Скорпиона. С конца 1970 г. до начала 1975 г., всего за 5 лет, было открыто около 200 космических источников рентгеновского излучения. Эта новая область изучения электромагнитных лучей, идущих из Космоса, бурно развивается. В рентгеновских лучах изучается и наше Солнце.

Таким образом, вести из Космоса мы получаем теперь по всему диапазону электромагнитных волн. От оптических лучей к тепловым и далее к радиоволнам, а в другую сторону — через ультрафиолетовые лучи к рентгеновским лучам.

Другой вид лучей высоких энергий представляют собой «космические лучи», понимаемые сейчас более узко как «корпускулярные лучи» из Космоса. Это элементарные частицы, преимущественно протоны и электроны, выбрасываемые при каких-то мощных процессах со скоростями, приближающимися к скорости света. Поэтому их кинетическая энергия и пробивная сила колоссальны. Как известно, уже у границ земной атмосферы они представляют большую опасность для космонавтов при долгом облучении.

Частицы космических лучей за пределами земной атмосферы, как и рентгеновские лучи, изучаются теперь с искусственных спутников Земли.

Еще один способ изучения космических тел и процессов опирается на более старую технику. Это так называемая баллонная астрономия. При помощи связок воздушных шаров-баллонов удается поднимать в стратосферу и там стабилизировать довольно большие телескопы, преимущественно для наблюдения Солнца без атмосферных помех.

По родным обсерваториям

Русская астрономия, по праву гордящаяся своими выдающимися представителями, в прошлом имела скромную материальную базу, если оставить в стороне первоклассную широко известную Пулковскую обсерваторию.

На огромной территории Российской империи, кроме Пулковской обсерватории, изучали небо лишь несколько небольших университетских обсерваторий, на которых редко работало больше чем по два-три специалиста — царское правительство не баловало науку и астрономию в частности.

Социалистический строй в корне изменил положение, и наша страна покрылась целою сетью крепостей, штурмующих тайны неба. Форпосты этих тип меридианного круга Сухарева, спектральные Фотоэлектрические приборы, мощные радиотелескопы и т. д. Вспомогательные лаборатории обсерватории необычайно разрослись.

Обсерватория старейшего Московского университета (иначе Государственный астрономический институт им. П. К. Штернберга, или ГАИШ), в котором крепостей, выдвинутые в социалистическую эпоху далеко на юг старейшими ветеранами астрономической науки в Ленинграде и Москве, быстро превратились в хорошо оборудованные обсерватории братских республик. В бывших царских колониях и полуколониях, где зачастую не было ни одного астронома-специалиста, местные национальные кадры стали равноправными творцами науки о небесных глубинах.

Рис. 23. Общий вид Пулковской обсерватории

Теперь Пулковская обсерватория обогатилась новыми приборами отечественной конструкции.

Здесь мы находим телескопы новых систем, изобретенные Максутовым и Слюсаревым, большой горизонтальный телескоп для изучения Солнца, новый свыше полустолетия (с 1924 г.) протекала моя научная деятельность, в 1954 г. переехала в новое обширное помещение на Ленинских горах, расположенное юдалеку от замечательного высотного здания Московского университета. В Крыму, под темным южным ом с 1958 г. вступила в строй южная база МГУ где установлены новые, большие телескопы до 125 см

Рис. 24. Новое здание ГАИШ на Ленинских горах. Вдали высотное здание МГУ

Разрушенная фашистами Крымская обсерватория Академии наук СССР в Симеизе восстановлена гораздо более обширная обсерватория выстроена вновь под Бахчисараем. Обе они объединены в Крымскую астрофизическую обсерваторию. С одной из них открывается широкий вид на море и на утесы южного склона горного хребта Яйлы, а с другой — взором охватываются цепи гор северных склонов этого же горного массива. Там установлен рефлектор с зеркалом 2,6 м. Установлены прибор для киносъемки Солнца, светосильные мощные камеры и приборы для фотографирования ночного неба, радиотелескопы и многие-многие другие приспособления для «хирургического вскрытия» атмосфер не бесных тел.

Рис. 25. 70-сантиметровый отражательный телескоп на обсерватории ГАИШ

В предгорьях величест венного Алагеза (иначе Арагаца) в Бюракане над Армянской долиной вырос ла обсерватория Акаде мии наук Армянской ССР Хорошо оборудованная расположенная в южных широтах и на большой вы соте, она является одной из лучших наших обсервато рий. Она также обладает рефлекторами с зеркалам диаметром в 1 и в 2,6 м Последний, как и его близ нец, — крымский, — наибольшие в Европе. Основным профилем этой обсерватории являются звездно-астрономические работы.

Рис. 26. Крымская астрофизическая обсерватория. На переднем плане — башня двойного астрографа; слева — башня 120-сантиметрового рефлектора

Также в горах, на горном хребте Канобили, над знаменитым курортом Абастумани, недалеко от Боржоми, в Грузии, с каждым годом расширяется астрофизическая обсерватория, больше всего сделавшая для изучения цвета далеких небесных тел и для изучения пыли в пространстве между звездами. Тут находится самый большой из телескопов системы Максутова с диаметром 70 см.

В Азербайджане, вблизи Шемахи, в 1967 г. вступила в строй новая обсерватория с двухметровым рефлектором и другими приборами.

На высоком горном хребте строится обсерватория, на которой установлен крупнейший в мире 6-метровый рефлектор, а внизу, в долине — огромный радиотелескоп.

Горная обсерватория у г. Алма-Аты в Казахстане успешно использовала телескоп Максутова с диаметром 50 см для установления тончайших деталей в облаках межзвездного газа.

Рис. 27. Бюраканская астрофизическая обсерватория АН Армянской ССР

Сильно разрослись или выстроены впервые университетские и другие обсерватории около Риги, Тарту, Харькова, Киева, Одессы, Казани, Николаева, Ташкента, Львова и другие. Многие из них имеют хорошие загородные филиалы. Базой для них является молодая, но бурно развивающаяся отечественная оптико-механическая промышленность, опирающаяся на рост тяжелой индустрии в нашей стране.

Умные» планеты и луны

Человек уже научился делать планеты, притом планеты не такие, как создала природа. Планеты, созданные природой, носятся в пространстве глухие, немые, невидящие.

Человек же создал планеты, более всего сходные с астероидами по размеру и по характеру движения, но планеты «умные». Они «видят» и «говорят». Планеты, созданные человеком, и «слушают», так как принимают радиоизлучение небесных тел и радиосигналы, посылаемые к этим планетам с Земли.

В СССР и в США после второй мировой войны начались запуски высотных ракет с разными автоматическими приборами и с телеметрической передачей.

Такие ракеты, поднимающиеся в самые разреженные слои атмосферы, оставляют под собой не только все облака, но и слой газа озона, который поглощает далекое ультрафиолетовое излучение светил и не позволяет изучать его. Даже эти кратковременные полеты ракет, снабженных автоматическими спектрографами и другими приборами, доставили нам много ценных сведений. Помимо данных о строении самой атмосферы, они, в частности, позволили впервые изучить далекий ультрафиолетовый спектр Солнца, его рентгеновское излучение и этим лучше понять его природу.

4 октября 1957 г. в СССР был запущен первый в истории человечества искусственный спутник Земли. Это было триумфом советской науки и техники, так как тут человек впервые преодолел тяготение Земли и создал искусственную луну,- не падающую вскоре вниз высотную ракету, а маленькую лабораторию, несколько месяцев кружившуюся вокруг Земли. За первой искусственной луной последовали дальнейшие, все возраставшего веса и все более богато оборудованные. Радиопередачи на Землю показаний приборов, установленных на спутниках, доставили много ценных сведений о строении верхних слоев земной атмосферы, о составе и энергии космических лучей, об излучении Солнцем ультрафиолетовых лучей и частиц вещества, несущихся с огромной скоростью.

В Советском Союзе 2 января 1959 г. впервые в мире был осуществлен запуск космической ракеты со станцией «Луна-1» на борту; последней ступени ракеты вместе со станцией была сообщена скорость около 11,2 км/сек, и она полностью вышла из области земного тяготения.

Освободившись от земного тяготения, станция продолжала движение уже под действием тяготения Солнца и стала описывать орбиту вокруг него как самостоятельная планета. Эта станция — планета более всего сходна с астероидами, особенно с теми малыми планетами, которые пересекают орбиту Земли. Ее период обращения 15 месяцев. Она будет теперь вечно обращаться вокруг Солнца, невидимая для нас, так как будет встречаться с Землей на расстояниях не менее миллиона километров.

4 октября 1959 г. третья космическая ракета СССР вывела на орбиту автоматическую межпланетную станцию «Луна-3», которая впервые сфотографировала невидимое с Земли полушарие Луны и передала эти фотографии на Землю после облета Луны.

Бурное развитие космонавтики — полетов в Космос, путь к которым указал наш великий соотечественник К. Э. Циолковский, тем станет поразительнее, чем лучше мы будем знать все технические трудности космических полетов. Только подумать, что всего лишь в 1957 г. был запущен первый искусственный спутник Земли. С тех пор за два десятилетия в Космос запущены сложные автоматические лаборатории и обсерватории. Найден способ благополучного спуска их на Землю.

Автоматические межпланетные обсерватории летают, получив начальный импульс при помощи многоступенчатых ракет. Чем больше сообщенная им начальная скорость (а сообщить ее тем труднее чем больше ее масса), тем дальше от Земли они могут быть «заброшены», летя вперед и возвращаясь по эллиптической орбите.. К 1975 г. межпланетные автоматические станции огибали планеты Венеру, Меркурий, Марс и даже Юпитер. Снабженные сложной аппаратурой, производящей различные измерения и фотографирование, такие станции доставили много сведений о планетах, частично перевернувших наши прежние представления о них. Некоторые межпланетные станции спускают на поверхность других небесных тел или выводят на орбиту искусственных спутников Луны и планет для длительного их изучения. Передача с них информации на Землю, с огромного расстояния, производится по команде с Земли путем телевидения. Наибольшими достижениями к моменту написания этих строк следует считать автоматическое взятие проб лунного грунта и его возвращение на Землю без человека, путешествия по Луне длительное время самоходных станций «Луноход-1» и «Луноход-2», также созданных в СССР, несколько высадок на Луну американских космонавтов и их поездки по Луне на луномобиле.

О научных результатах, полученных при различных запусках в Космос, мы расскажем дальше, а здесь отмечаем лишь сказочное развитие этого нового метода астрономических исследований, превращающего астрономию в частично экспериментальную науку. Это факт большого философского и практического значения.

Литература о том, как запускаются, управляются и летают космические станции и корабли, как они оборудованы, очень обширна, и мы отсылаем к ней наших читателей. Подчеркнем здесь только, что теория запуска и полета космических аппаратов прямо опирается на ранее изученные астрономией законы движения небесных тел. Это еще одно из практических применений астрономии к нуждам человечества.

Наблюдайте и изучайте Вселенную сами

Хотя большинство современных научных исследований и открытий требует обширной специальной подготовки человека, сложных и дорогих инструментов и обширной научной литературы на разных языках, на которых надо поэтому уметь читать, это не значит, что для творческой работы у любителя астрономии не осталось никаких возможностей. Тем более доступно каждому следить за небесными явлениями и на основе прочитанного в книгах уметь находить на небе интересные явления, замечать их подробности, а также правильно их понимать. Нужно только выбирать себе задачи по силам, соответствующие знаниям и возможностям.

Мне приходится очень много отвечать на письма читателей. Приятно бывает отвечать любознательному читателю, который хочет знать больше или описывает грамотно какое-либо явление, которое затрудняется понять правильно сам. Но бывают, к сожалению, случаи, когда человек горделиво заявляет, например, что закон тяготения неверен, а вот придуманный им (именно придуманный) закон является-де истиной. Удивительным образом такие люди забывают, что закон тяготения проверен на протяжении веков множеством людей и проверен на практике. Например, наши космические корабли запускаются и достигают своего назначения, как все знают, на основе этого закона тяготения и его точной математической разработки. Законы же, выдуманные несведущим человеком, не позволяют ничего рассчитать и не подтверждаются никакой практикой.

Словом, самодеятельность любителя без необходимых знаний не может дать ничего в области теории. Грустно бывает читать письма, начинающиеся так: «Я имею только четырех- (или семи-) классное образование, НО я считаю, что такие-то теории неверны, а что дело обстоит так-то». Каждому понятно, что человек в пожилом возрасте не может вдруг взяться за исполнение роли в балете и не может сделать лучшую электронно-счетную машину, если никогда этим не занимался и не имеет для этого знаний и опыта. Но вот потому, что авторы популярных книг о сложных физических проблемах стараются рассказать понятно, некоторые думают, что они сами так же просто могут создать нфвую науку.

Но довольно о тех, кто становится на неверный путь и не отдает себе трезвого отчета о своих возможностях, а труд человечества недооценивает.

Каждый любитель может в телескоп, бинокль и даже невооруженным глазом увидеть и проследить то, о чем мы здесь рассказываем. Если нет телескопа, каждый может его сделать, имея терпение и желание. Небесные светила можно не только рассматривать, но и фотографировать. Можно фотографировать Луну, Солнце, затмения, кометы, перемещения планет, созвездия. Можно самому сделать фотографическую карту неба.

Многие любители получили за последние годы великолепные фотографии комет, имеющие огромную научную ценность. Среди любителей стало развиваться даже изготовление радиотелескопов, конечно, небольших. Некоторые любители, знакомые с радиотехникой, смогли даже осуществить посылку радиосигнала на Луну и получить от нее отраженный сигнал.

Серьезную научную ценность могут иметь наблюдения так называемых серебристых, или ночных, светящихся облаков, визуальные, фотографические и радионаблюдения «падающих звезд» — метеоров. При наличии телескопа средней силы, даже самодельного, можно с пользой зарисовывать изменения на планетах. Можно наблюдать изменения блеска переменных звезд или открыть новую звезду, что обычно именно любителям и удается. Например, они открыли новую звезду в созвездии Лебедя в августе 1975 года. Это все области, для которых у специалистов-астрономов «не хватает рук» или времени.

Как все это делать, какую выбирать программу, мы, конечно, не можем здесь описать. И без того слишком о многом нам предстоит рассказывать. Но для этого есть специальные руководства и инструкции. Назовем для примера следующие книги: П. Г. Куликовский, Справочник любителя астрономии, изд. 4-е, «Наука», 1971; В. П. Цесевич, Что и как наблюдать на небе, изд. 4-е, Физ-матгиз, 1973; Астрономический календарь, Постоянная часть, изд. 6-е, «Наука», 1973.

Старайтесь и сами читать звездное небо — великую книгу природы, без чего ваше чтение не даст вам полного и правильного понимания прочитанного.

Как делаются и как не делаются астрономические открытия

Ни один научный факт или теория не получают окончательного, общего признания до того, как они будут проверены разными учеными. Наука отличается от ненаучного праздного фантазирования тем, что ее выводы каждый человек при желании может проверить сам. Есть тут, правда, два затруднения. Иногда какое-либо явление может наблюдаться только с помощью сложных и дорогих инструментов, и без них ничего не сделаешь. В других случаях, для того чтобы самому проверить до конца все расчеты, надо иметь соответствующую научную подготовку. Надо, например, знать другие, твердо установленные астрономические факты, надо знать механику и химию, надо знать законы физики и уметь производить иногда очень сложные математические вычисления.

В нашей книге мы постараемся помочь любознательным людям познакомиться с тем, как ученые пришли к тем или другим выводам, но для этого не раз придется напрячь свою мысль, разобраться в чертеже, самому подумать. Тут уже ничего не поделаешь. Науки, основанные на математике и физике, нельзя, конечно, воспринять так же легко и без подготовки, как науку описательного характера, например, как популярную историю войны или как краткую географию СССР. Будем надеяться, что представители этих наук не обидятся на нас за это сравнение. Во всяком случае, они согласятся с тем, что их описания и выводы понятнее потому, что они имеют дело с явлениями, более знакомыми каждому и более очевидными, не требующими расчетов.

Многие представляют себе, что астрономические открытия делаются так: сидит человек у телескопа и вдруг видит в него новое йветило с необычными свойствами, с какими-то движениями. Бывает, действительно, и так. Этим путем удается, чаще в результате специальных поисков, открыть внезапно вспыхнувшую «новую» звезду или комету, приблизившуюся к нам из глубин пространства. Часто это делается теперь в лаборатории по фотографиям неба. Но таким путем наука продвигается мало, а важные для науки открытия вытекают из систематического, иногда многолетнего изучения как этих, так и давно уже известных объектов.

Возьмем, например, открытие «быстро летящей» звезды. Такое открытие может быть сделано (а может и не быть сделано!) в процессе систематических исследований видимого перемещения звезд по небу. Здесь есть два пути: один из них — составлять в результате многолетних наблюдений на телескопе каталог звездных координат с максимальной точностью. Часами в ясные безлунные ночи отмечать (с точностью до сотых долей секунды) момент прохождения звезды через вертикальную нить, видимую в поле зрения телескопа, а затем забираться в темноте на лесенку, чтобы отсчитать в несколько микроскопов по градуированному кругу угол между направлением телескопа и горизонтом. Несколько микроскопов нужны для исключения ошибок, вносимых не идеально точным изготовлением круга, разделенного на градусы и их доли, и крохотной неточностью делительной машины. А для фиксации момента делается отметка на непрерывно движущейся телеграфной ленте, на которой точнейшие часы, стоящие в подвале, электрически записывают секунды в виде черточек. Нужный нам момент определяется измерением под микроскопом точного положения отметки на ленте. Но ведь существует и ошибка в показаниях часов, и она постепенно меняется! Вот эту ошибку постоянно надо определять из наблюдений звезд.

Наконец каталог координат тысяч звезд составлен. Теперь надо сравнить его с каталогом, составленным столь же точно десятки лет назад, чтобы найти звезды с заметно изменившимися координатами — «летящие». Этот каталог составляли люди, которых, может быть, уже нет в живых. Они еще не могли использовать свой каталог для данной цели. Таким образом, астрономия в немалой мере живет прошлым и работает для будущего.

Более легкий путь: можно сравнивать не каталоги, а фотографии одних и тех же участков неба, полученные на одном большом телескопе. Но и здесь промежуток времени между снимками должен составлять десятки лет.

Всякое открытие опирается в большей или меньшей степени на труды других людей, на их успехи, на их неудачи, на их мысли. В наше время, чтобы сделать открытие, надо много учиться, много знать. В области наблюдений нужна обычно современная астрономическая техника, а в области теории — глубокое знание физики и математики.

О науке написано много популярных книг. В них коротко и как можно проще стараются рассказать о сложных, иногда трудно понимаемых вещах, и потому некоторым читателям кажется, что научный результат получается так же легко и просто, как о нем написано, стоит лишь порассуждать за чайным столом. Такое же впечатление могут произвести популярные рассказы о том, что по поводу некоторых недостаточно изученных вопросов один ученый думает так, другой иначе, третий — еще по-своему. Хотя такое различие мнений и бывает, они все научны. Но нельзя думать, что любой человек может высказать свое мнение и оно будет столь же цейно.

Надо внимательно разобраться, что в науке является установленным фактом и что является предположением. Например, законы движения небесных тел — это надежно установленные законы, позволяющие точно вычислять заранее положение и скорость каждого тела. Эти законы проверены множеством людей в разных странах на протяжении трех веков. Сейчас лучшей их проверкой является то, что по этим законам рассчитывают скорости запуска космических ракет и попадают ими в далекие, движущиеся планеты, в строго заданное место Луны.

К сожалению, наряду с миллионами людей, правильно понимающими развитие науки, есть еще сотни читателей, не понимаюп^их этого.

Как правило, авторы таких безграмотных рукописей никогда не соглашаются с указанием ошибок и пересылают их от одного несчастного специалиста, вынужденного отвечать, к другому, а сами испытывают только разочарование…