Глава 4. Падающие звезды и звездные дожди

Падающие звезды и камни с неба

Когда катится по небу звездочка, оставляя в темном небе светлый след, то иные суеверные люди говорят: вот закатилась чья-то жизнь. Эти люди считают, что у каждого человека есть своя звезда на небе, что у счастливого человека и звезда яркая, а у кого звезда тусклая, у того и жизнь серая. Потому же они думают, что раз закатилась звезда, значит закатилась и жизнь.

Будь так, в дни больших сражений, когда тысячи людей расстаются с жизнью на поле боя, небо осыпалось бы звездами, как деревья пожелтевшими листьями в ветреный осенний день. И если бы это действительно звезды катились с неба, то уже давным-давно не осталось бы на нем ни одной звезды, так как на всем видимом полушарии неба самый зоркий глаз насчитывает не более 3000 звезд, между тем и без войны на земном шаре ежегодно умирает гораздо больше людей.

Много разных догадок и предположений высказывалось о природе падающих звезд, но уже более ста лет твердо установлено, что падающие звезды, называемые иначе метеорами, это не более как мелкие камешки размером с зернышко и меньше, влетающие из межпланетного пространства в нашу атмосферу и обращающиеся в ней в раскаленный пар.

Чем же доказать, что это так, что это не простое предположение?

— спросят, вероятно, скептические читатели.

Рис. 86. Дождь падающих звезд (Деонид), наблюдавший в ноябре 1866 г. (по рисунку очевидца)

В IV веке до н. э. греческий философ и ученый Аристотель считал метеоры земными испарениями, и за последующие две тысячи лет никому не приходило в голову, как можно было бы проверить это предположение, ничем, впрочем, тогда не обоснованное.

Только в 1798 г. немецкие студенты Брандес и Бенценберг догадались, что природа падающих звезд стала бы для нас гораздо яснее, если бы удалось определить расстояние до них, и придумали способ, как это сделать, воспользовавшись уже знакомой нам идеей параллактического смещения.

Если падающая звезда (метеор) летит не очень далеко от наблюдателя, то ее путь на фоне звездного неба покажется различным, в зависимости от того, откуда наблюдатель на нее смотрит. Два наблюдателя, находящиеся на расстоянии 30-40 км друг от друга, будут видеть метеор в проекции на небесный свод в различных местах. Различие в видимом пути метеора будет для них тем меньше, чем дальше от них метеор. Точно так же бьющая струя фонтана проектируется на разные деревья, которыми обсажена площадка с фонтаном, если на него смотрят двое спутников, стоящие немного поодаль друг от друга. Уходя со своим спутником (или со спутницей, если это вам больше нравится) от фонтана, бросьте взгляд на него издали, вы оба увидите тогда его искрящуюся струю на фоне одного и того же дерева.

Наблюдателям нужно было лишь убедиться, что они видят и зарисовывают на звездной карте путь одного и того же метеора, а в этом им помогли часы и описание яркости, а также цвета метеора. Если они оба видели, например, зеленоватый метеор, светивший, как звезда второй величины, и притом в один и тот же момент, значит, это был один и тот же метеор, а различие в его видимом пути на небе, о чем судят по зарисовке на карте звездного неба, — это параллактическое смещение.

Из этих наблюдений можно определить с помощью тригонометрии расстояние до любой точки метеорного пути (например, точки, где метеор исчез). Не будем утомлять читателя тригонометрией или описывать подробности графического решения задачи, которое тут также возможно. Приведем лишь простейший пример.

На рис. 87 2-й наблюдатель видит метеор (летящий по прямой) вспыхнувшим в точке а’ (в проекции на небесную сферу). Пусть эта точка лежит у него прямо над головой. 1-й наблюдатель, находящийся на 30 км в стороне, увидит ту же точку (начало метеора) в точке а, которая уже не находится над его головой.

Рис. 87. Определение высоты метеора

Сравнивая свои зарисовки метеора на звездной карте, наблюдатели видят, что точка а’ отстоит от точки а на 18°. Значит, в этом прямоугольном треугольнике угол при точке А равен 18°.

По таблицам тригонометрических функций можно убедиться в том, что если угол равен 18°, то противолежащий ему катет прямоугольного треугольника в три раза меньше прилежащего катета. Если противолежащий катет, т. е. расстояние между наблюдателями, было, скажем, 30 км, то, значит, расстояние точки появления метеора от 2-го наблюдателя было 90 км.

Так было установлено, что путь метеора над Землей находится на высоте около сотни километров, и притом начало его — выше, а точка исчезновения — ниже.

Хотя явления метеоров протекают в атмосфере (как мы убеждаемся из определения их высот над Землей), но их скорости убеждают нас в том, что они не могут быть земного происхождения. Весь свой путь длиной в 30-40 км они пролетают примерно за секунду и даже быстрее. Такую скорость — десятки километров в секунду — может иметь только тело, несущееся в мировом пространстве и вторгшееся в нашу атмосферу извне. В этом нас убеждают и многие другие наблюдения метеоров.

В 1833 г. было замечено, что во время звездного дождя, когда метеоры падали во множестве, все они вылетали из одного и того же созвездия — из созвездия Льва. Так было и вечером, и ночью, и под утро.

Таким образом, то место неба, откуда вылетали метеоры, участвовало в суточном вращении неба, в этом кажущемся движении, вызванном суточным вращением Земли. Значит, по отношению к потоку метеоров, точно так же как и по отношению к звездам, Земля поворачивается, значит, метеоры приходят к нам из межпланетного пространства, они не связаны с Землей, не участвуют в ее вращении.

Метеоры светятся в земной атмосфере, но сами возникают не в ней, а попадают в нее извне, из мирового пространства. Метеоры — это гости нашей планеты, странники в безвоздушном пространстве, но гостят они у нас кратковременнее, чем жквут мотыльки в летний день. Влетая со скоростью десятков километров в секунду из безвоздушного пространства в атмосферу, под действием сопротивления атмосферы они накаляются, превращаются в пар и, ярко светясь в течение какой-либо секунды, «растворяются» в воздухе. Такова участь этих мелких камешков, быть может, миллиарды лет носившихся невредимыми в межпланетных просторах и погибших, как мошки, влетевшие в костер, при первом соприкосновении с воздушным покрывалом Земли.

Автор проговаривался уже не раз, что метеоры — это мелкие камешки, влетающие в атмосферу Земли. А уж раз так, то приходится сразу же заявить, что основанием к этому заключению являются прежде всего случаи падения на Землю «камней с неба».

Среди метеоров наблюдаются иногда чрезвычайно яркие, уже не «падающие звезды», а скорее летящие огненные шары, бывающие видимыми даже днем. Их называют болидами. И вот бывает, что в том месте атмосферы, где болид заканчивает свой блистательный полет, возникает темное облачко, а на землю падает камень. Земли достигают только более крупные камни, не успевшие полностью испариться при своем полете сквозь атмосферу. Камни, выпадающие на Землю с неба и называемые метеоритами, встречаются всех размеров, начиная с пылинок и кончая камнями размером с большой шкаф. Американские астрономы Уиппл и Яккиа недавно установили, что типичные твердые кусочки, производящие явление метеоров, имеют рыхлое строение.

То, что метеоры являются камешками, подтверждается фотографиями спектров метеоров, которые за последнее время удалось получить.

Портреты и паспорта метеоритов

Первым ученым, занявшимся в начале XX века фотографированием и изучением спектров метеоров, был профессор Московского университета С. Н. Блажко. Тогда еще молодой ученый, он направил на небо небольшую светосильную фотографическую камеру с призмой, установленной перед объективом.

Даже простая фотография метеора — дело довольно редкой удачи, потому что метеор, как быстро движущаяся светящаяся точка, и притом светящаяся довольно слабо, не успевает запечатлеть свой, так сказать, «портрет» на пластинке. При современной чувствительности фотографических пластинок только самые яркие метеоры, те, которые ярче звезд второй величины, оставляют на пластинке свой след в виде тонкой линии. Вспышки при полете метеора отмечаются на фотографии утолщениями этой линии.

Нужно, чтобы такой яркий метеор пролетел как раз в области неба, охватываемой данной фотокамерой. Можно, правда, выбирать для этой цели ночи, когда бывает заведомо много метеоров, и все же редко случается, чтобы через поле зрения камеры пролетел достаточно яркий метеор.

Рис. 88. Фотография яркого метеора. Утолщения следа метеора указывают на повторные вспышки его яркости при полете

Недаром С. Н. Блажко на вопрос астрономов, желавших фотографировать метеоры: «Каковы, по-вашему, шансы на успех?», неизменно отвечал шуткой: «Это зависит от счастья, а я не знаю, счастливый вы или нет».

Элемент удачи тут, конечно, велик, но надежду на удачу можно увеличить, если фотографировать не одним, а несколькими фотоаппаратами сразу, направив их на разные области неба. Совместными усилиями нескольких фотокамер вероятнее захватить небесного беглеца. Такая батарея фотокамер, почти еженощно стерегущих появление метеоров, установлена, например, на обсерватории в Душанбе.

Рис. 89. Спектры метеоров: слева — железного, со множеством ярких линий, справа — каменного, в котором пара самых ярких линий (крайние слева) принадлежит ионизованному кальцию. Перерывы наклонных линий спектра на правом снимке вызваны быстрыми закрываниями объектива фотоаппарата специальным вращающимся сектором

В среднем один метеор получается за 100 часов экспозиции (конечно, не на одной, а на многих пластинках) в безлунные ночи с обычным (т. е. небольшим) числом падающих звезд, если применяется одна камера типа «Турист». В августе, когда много падающих звезд вылетает из созвездия Персея, один сфотографированный метеор приходится в среднем на 5 часов экспозиции.

Нашлось бы у вас терпение фотографировать метеоры? У многих любителей астрономии из Московского отделения Всесоюзного астрономо-геодезического общества это терпение нашлось, и они были за него вознаграждены рядом прекрасных и ценных фотографий. Между тем в сравнении с терпением вооружение «ловца метеоров» может быть очень скромным — один или лучше несколько обычных фотоаппаратов типа «Турист» или «Фотокор» и запас пластинок.

Рис. 89. Спектры метеоров: слева — железного, со множеством ярких линий, справа — каменного, в котором пара самых ярких линий (крайние слева) принадлежит ионизованному кальцию. Перерывы наклонных линий спектра на правом снимке вызваны быстрыми закрываниями объектива фотоаппарата специальным вращающимся сектором

Если перед фотокамерой поставить призму, какая применяется в спектрографах, то вместо фотографии яркого метеора получится фотография его спектра. Ширина спектра будет определяться видимой длиной пути метеора по небу.

Фотографировать спектры метеоров еще труднее или, вернее, требуется еще больше удачи и времени, чем для обычного фотографирования, потому что свет метеора, растянутый в спектр, да еще поглощенный в призме, — гораздо слабее. С. Н. Блажко получил еще в 1908 и 1914 гг. спектры нескольких метеоров и подробно исследовал их. Новые спектры метеоров удалось получить только за последние годы, причем совместными усилиями всех астрономов мира, занявшихся этим делом; к настоящему времени удалось набрать не очень-то много таких спектрограмм.

Что же оказалось? На основании спектров метеоров — как бы их «паспортов» — выяснилось, что одни из них состоят из каменистых веществ, другие — из железа с примесью никеля. Но как раз такими оказываются и метеориты. Некоторые из них — это камни, которые лишь специалист может отличить от обычных земных пород. Другие же состоят из чистого железа с примесью никеля и притом в такой пропорции, которая в самородном железе не встречается. От искусственно выплавленного железа они отличаются необычайно крупной кристаллизацией, о чем, впрочем, мы еще будем говорить. Изредка метеориты попадаются как бы в виде железной губки, поры которой заполнены каменистой массой. Это — железокаменные метеориты.

Звездные дожди и потоки метеоров

Мелкие частички, — будем их называть камешками, хотя многие из них железные, — производящие явление метеоров, или падающих звезд, часто несутся большими роями. Между тем более крупные тела

несутся в пространстве и падают на Землю одиночками и во всяком случае не в компании с метеорами. Они как бы не желают знаться с мелочью, и наблюдаемые иногда звездные дожди, целые потоки метеоров, вовсе не сопровождаются учащением падения метеоритов. Это наводит на мысль, что хотя состав метеоров и метеоритов одинаков, но происхождение их может быть различным.

Звездные дожди и ливни отмечались не раз, хотя и редко.

Первый из них, описанный научно, наблюдался в ноябре 1799 г. В ноябре же 1833 г. (12-го числа) подобный дождь метеоров наблюдался ночью по всей Земле. Звезды падали как хлопья снега в зимнюю метель, и зачастую один зритель за секунду замечал до 20 метеоров. Сколько же их падало по всему небу, которое не мог видеть сразу один наблюдатель! Впрочем, такрш подсчеты делались не раз. Один наблюдатель, более или менее зоркий, может уследить за площадью неба диаметром около 60 градусов. Так как метеоры светятся на высоте порядка 80 км над Землей, то обозреваемая нашим наблюдателем на этой высоте площадь атмосферы составляет около 5000 км2. Но ведь поверхность всей атмосферы в 100 000 раз больше. В среднюю безлунную ночь, когда нет метеорного дождя, наблюдатель замечает за час на своем участке неба около десятка метеоров, следовательно, за сутки над всей Землей в атмосфере можно было бы насчитать 24 миллиона метеоров.

В ноябрьскую ночь 1833 г. вместо 10 насчитывалось около 70 000 метеоров за час. Значит, в эту ночь на Землю обрушились сотни миллиардов метеоров! А сколько же их пролетело мимо Земли?! Этого уж никто точно не знает, потому что крошечные камешки, несущиеся мимо Земли, совершенно невидимы, они не светятся. Можно только сказать, что число камешков, пронесшихся мимо, вероятно, во столько же раз больше числа попавших в земную атмосферу и прочертивших огненный след, во сколько раз число дождевых капель в сильном ливне больше того, которое упало на шляпу какого-либо несчастного, попавшего под этот дождь.

Из особенно крупных звездных дождей последний произошел 9 октября 1933 г., когда ежеминутно появлялось до 350 метеоров, летевших из созвездия Дракона. Врочем, метеоры эти были неяркие и, начав появляться с вечера на ночном небе Европы, к полуночи они совсем прекратились, так что, когда ночь перекочевала в Америку, там этого прекрасного зрелища не было и в помине. Рой камешков, налетевших на Землю, пронесся мимо нее, очевидно, быстрее, чем Земля успела сделать четверть оборота вокруг своей оси.

Рис. 90. Нанесенные на карту звездного неба пути метеоров, принадлежащие к одному радианту. Место радианта отмечено буквой Р

В определенные дни ежегодно можно видеть усиленное падение метеоров, хотя его и нельзя назвать звездным дождем. Так, например, ежегодно 9-14 августа метеоры в большом количестве вылетают из созвездия Персея, 19-22 апреля — из созвездия Лиры, 9-12 декабря — из созвездия Близнецов и т. д.

Центр того места, от которого во все стороны, как стрелы, летят метеоры, называется радиантом. Метеоры, радиант которых находится в созвездии Персея, называются Персеидами, те у которых радиант в Лире, — Лиридами и т. д.

Рис. 91. Параллельные линии железнодорожных рельсов и контуров моста в перспективе сходятся, подобно путям метеоров, продолженным назад, и образуют центр перспективы, или радиант

Нетрудно понять, что схождение в одном месте — в радианте — метеорных путей, продолженных назад, есть явление кажущееся, перспективное. В самом деле, метеоры в конце своего пути приближаются к нам и потому кажутся расходящимися удаляющимися друг от друга. Начало их видимого пути находится выше в атмосфере, дальше от нас, и на большом расстоянии пути их кажутся сближенными. Вы видели не раз, как сближаются вдали и сливаются вследствие перспективы железнодорожные или трамвайные рельсы, в действительности параллельные друг другу. Пути метеоров в пространстве также параллельны друг другу. Параллельно летящие частицы, составляющие поток, врезаясь в воздух, начинают светиться и по мере приближения к наблюдателю кажутся все дальше уходящими от той точки (радианта), от которой они к нам движутся.

Ежедневно Земля встречает отдельные метеорные частички и «еженощно» бывают видны отдельные метеоры, которые ни к какому метеорному потоку нельзя отнести. Их называют спорадическими метеорами. По сравнению с метеорами потоков это как бы заблудившиеся экскурсанты или солдаты, отставшие от своих колонн.

Можно подсчитать расстояния между частичками метеорного роя, наблюдая число падающих звезд, появляющихся за час на определенной площади земной атмосферы, и зная скорость движения частиц. Оказывается, что метеоры летят в пространстве не очень тесным роем. Например, в потоке Персеид на каждую частичку приходится объем в 10 миллионов кубических километров! Частичка от частички отстоит в среднем на две с лишним сотни километров! Встретясь с ними за пределами Земли, например, пролетая в воображаемом корабле межпанетных сообщений, мы и ке подозревали бы, какой волшебный небесный фейерверк они могут произвести для наблюдателя на Земле.

Подробнее о метеорах

Метеоры и метеориты чрезвычайно занимательны с нескольких точек зрения и вполне стоят того, чтобы уделить им побольше внимания.

Во-первых, метеориты — это единственные небесные тела, которые попадают в наши руки. Лишь их состав и строение мы можегл изучать непосредственно, можем трогать, измерять, дробить, анализировать, изучать так же, как мы изучаем все земные предметы. Остальные небесные тела мы изучаем косвенными путями, наблюдая их видимые положения и движения, анализируя их свет. Результаты такого изучения для неспециалиста часто кажутся недостоверными к потому не вполне его удовлетворяют, хотя в действительности многие из этих данных гораздо достовернее, чем, скажем, наши представления о некоторых частях поверхности нашей собственной планеты, например об арктических областях или о дебрях Центральной Африки. Во всяком случае, не напрасно создалось выражение: «недосягаемы, как звезды на небе», а если и говорят, что кто-то там «хватает звезды с неба», то приводят это как описание невероятного успеха. Между тем, если и не настоящие звезды, то хотя бы падающие звезды с неба (по крайней мере, метеориты) некоторым людям буквально удается «хватать».

Другое обстоятельство, благодаря которому метеоры и метеориты привлекают каше внимание, — это то, что они тесно связаны с рядом других небесных образований: с кометами, астероидами, с зодиакальным светом и с солнечной короной, с так называемыми темными туманностями в межзвездном пространстве, а также с образованием рельефа поверхности некоторых небесных тел, включая отчасти и нашу Землю.

Эти камешки — частично обломки каких-то небесных тел, погибших при катастрофе, частично — это те «кирпичи», из которых сложились разные небесные тела и, быть может, даже наша Земля.

Наконец, изучение метеоров и метеоритов мы можем рассматривать как средство для изучения высоких слоев земной атмосферы, которые так интересуют и ученых, и самолетостроителей, и радистов, и даже артиллеристов, но которые до недавнего времени были недоступны для непосредственного изучения. Последний вопрос мы рассмотрим позднее, а пока займемся метеорами как небесными телами, хотя и мельчайшими из тех, которым можно присвоить этот громкий титул.

Что же нас интересует при изучении метеоров, что подлежит определению из наблюдений?

Высота точек появления и исчезновения метеоров над земной поверхностью, скорость их движения и ее изменения, зависимость этих величин от яркости метеоров и их связь друг с другом, число метеоров в разные часы суток и в течение года, распределение их по яркости и по величине, их путь в пространстве до встречи с Землей…

Один из крупнейших советских «ловцов» падающих звезд И. С. Астапович зарегистрировал за 15 лет своей работы около 40 000 метеоров.

Наблюдать метеоры с пользой для науки может каждый, потому что большинство наблюдений метеоров производится невооруженным глазом и не требует никаких особых заний. Даже и инструменты для наблюдения метеоров в большинстве случаев могут быть так просты и скромны, что располагать ими может каждый любитель науки о небе.

Выдающуюся роль в науке о метеорах сыграли любители астрономии, такие, как Деннинг в Англии. В СССР целая организация любителей астрономии в составе Всесоюзного астрономо-геодезического общества занимается наблюдением метеоров. Эта организация играет большую роль в развитии наших знаний о метеорах и располагает обширным архивом наблюдений. Такие организации есть и за рубежом. Метеоры стали теперь изучать и в обсерваториях, особенно интенсивно в Чехословакии, в США, у нас — в Душанбе, Ашхабаде и Одессе, а радиометодами — в Англии.

Уже говорилось о том, каким способом (методом засечки) определяется высота над Землей разных точек метеорного пути. Два наблюдателя, разделенных расстоянием в 30-40 км, одновременно следят за одной и той же областью неба и зарисовывают на карту звездного неба пути метеоров. Сличая потом свои зарисовки и отождествляя общие для обоих наблюдателей метеоры по моменту наблюдения, их яркости, цвету и примерному расположению, они измеряют перспективный (параллактический) сдвиг пути метеора, как его видел один наблюдатель, по сравнению с тем, как этот путь видел другой.

Конец пути, более близкий к наблюдателю, смещается больше, чем начало пути. Зная высоту начала и конца пути метеора в атмосфере и проекцию пути на поверхность Земли, нетрудно установить его истинную длину. Оценивая продолжительность полета метеора в земной атмосфере и деля на нее длину пути, получают его среднюю скорость, поскольку действительная скорость движения метеора в атмосфере непостоянна: она меняется из-за тормозящего действия сопротивления воздуха.

Скорость метеора в атмосфере интересует нас прежде всего потому, что знание ее решает вопрос о том, откуда приходят к нам метеоры — из межпланетного или из межзвездного пространства.

Мы знаем, что скорость движения Земли по ее почти круговой орбите около Солнца составляет 30 км/сек. Теория тяготения говорит, что тело, движущееся на расстоянии Земли от Солнца со скоростью, не превышающей по отношению к Солнцу 30•2 км/сек, т. е. не превышающей 42 км/сек, не может преодолеть тяготения к Солнцу. Оно движется тогда по эллипсу, периодически возвращаясь к Солнцу, и является, таким образом, членом Солнечной системы.

При скорости, хотя бы чуть большей чем 42 км/сек, всякое тело лишь искривит свой первоначальный путь под действием тяготения к Солнцу, но не замкнет его и, обогнув Солнце по гиперболе, навсегда уйдет из области его притяжения. В этом случае и приближается оно к Солнцу по гиперболе, т. е. в первый и в последний раз появляется в нашей Солнечной системе, придя, очевидно, из межзвездного пространства, где тяготение к нашему Солнцу слабее, чем тяготение к другим звездам.

Движение по параболе при скорости 42 км/сек является пограничным между движениями по эллипсу и по гиперболе и практически невозможно. Если такая скорость случайно и возникла бы, то немедленно притяжение планет хотя бы немного увеличило ее или уменьшило, превратив тотчас же параболическую орбиту, по которой тело вознамерилось двигаться, в орбиту эллиптическую или в гиперболическую.

Не подумайте, пожалуйста, что 42 км/сек — это какое-то абсолютно роковое число. По теории тяготения на всяком расстоянии от Солнца есть скорость V0, при которой движение тела должно быть круговым; это движение будет эллиптическим — при скорости, большей чем V0, но меньшей чем скорость, равная V02, и гиперболическим — при скорости, хотя бы ничтожно большей, чем V02. В случае же скорости, меньшей чем V0 на данном расстоянии от Солнца, тело упадет на него по кривой линии. Тело будет падать на Солнце по прямой, если его скорость равна нулю, т. е. если телу, неподвижному относительно Солнца, предоставлено падать на него столь же свободно, как зернышку на пашню.

Мы наблюдаем метеоры только вблизи самой Земли, и потому для наблюдаемых метеоров число 42 км сек действительно является как бы «роковым». К сожалению, простые зарисовки пути метеоров вследствие трудности запомнить точно путь метеора, в особенности его начало, из-за внезапности его появления и из-за скоротечности явления не дают желаемой точности и ведлгт к преувеличению оценки скорости движения.

Большую точность дает фотографирование метеора двумя фотокамерами, отстоящими друг от друга на несколько километров. При этом, однако, перед объективами камер надо поставить сектор, быстро вращаемый электромотором, так что в течение секунды объективы камер несколько раз закроются этим сектором, и экспозиция несколько раз прервется.

В результате след метеора на фотопластинке получается с перерывами, промежутки между которыми равны по времени, но не равны по длине. В этом случае ясно видно, что в начале своего пути метеор летел быстрее, а к концу медленнее. Этим выявляется тормозящее действие атмосферы. Высота определяется так же, как и при наблюдениях глазом, — по смещению пути метеора на фоне звезд, зафиксированных на обеих фотографиях.

К несчастью, получить такие парные фотографии метеоров удается, конечно, еще реже, чем в случае обычного фотографирования.

Что касается яркости метеоров, то при наблюдениях глазом она оценивается по сравнению со звездами и говорят о метеорах первой звездной величины, второй величины и т. д.

Анализ наблюдений показывает, что чем ярче метеор, тем глубже в атмосферу он проникает, но высота точки его возгорания почти не зависит от его яркости. Подавляющее большинство метеоров начинает светиться на высоте 100-120 км и гаснет на высоте 80-85 км. Выяснилось, что на этой высоте в атмосфере существует особый слой, где плотность воздуха быстро повышается. Этот слой — невидимая воздушная преграда — разрушает остаток достигшего ее метеора. Большинство небесных гостей гибнет у этой «стены», натолкнувшись на нее.

Легко понять, что при данной скорости полета, определяющей силу сопротивления воздуха, а следовательно, и быстроту испарения метеора (а с ней и его яркость) метеор будет тем ярче, чем больше его масса. Только более массивные и медленные метеоры пробивают «броню» на высоте около 80 км и проникают ниже, разрушаясь нацело, на высоте 30-40 км. Этой высоты достигают болиды, полет которых сопровождается звуком, зачастую напоминающим шипение. Наконец, метеориты, выпадающие на Землю, обычно перестают светиться на высоте около 22 км и падают с нее на Землю как темные, несветящиеся тела с обычной скоростью падающих тел. В этом месте запас их космической скорости обычно иссякает.

С другой стороны, чем больше скорость метеоров при их врезывании в атмосферу, тем больше высота, на которой начинается их свечение и разрушение. При больших скоростях сопротивление воздуха растет пропорционально квадрату скорости, а может быть, и быстрее. Поэтому метеор со скоростью 20 км/сек светится на высоте около 60 км, а со скоростью 70 км/сек — на высоте около 100 км.

Для изучения земной атмосферы и свечения метеора интересна его скорость по отношению к Земле, о которой тут идет речь. Для изучения же происхождения метеоров нужно знать их скорость относительно Солнца. Скорость их относительно Земли складывается из их скорости относительно Солнца и из скорости движения Земли. Например, метеор, летящий прямо навстречу Земле со скоростью 40 км/сек, вонзится в нашу атмосферу со скоростью 70 км/сек, потому что Земля сама делает по 30 км/сек ему навстречу. Такой же метеор в погоне за Землей подлетит к ней со скоростью всего лишь 40-30=10 км/сек, но притяжение Земли немного увеличит эту скорость.

Рис. 92. Метеоры налетают ‘в лоб’ на ‘утреннюю’ сторону Земли и догоняют ее ‘вечернюю’ сторону

Так как для любого момента величина и направление скорости движения Земли известны, то из наблюденной скорости метеора всегда можно вычесть скорость Земли и получить его скорость относительно Солнца. При таком расчете надо учитывать угол между скоростями и изменение пути и скорости движения метеора под влиянием притяжения Земли.

Фотографирование с вращающимся сектором перед объективом фотокамеры определенно говорит, что скорости метеоров явно эллиптические, т. е. что метеоры являются постоянными членами Солнечной системы. Три таких метеора оказались обращающимися вокруг Солнца (конечно, до их гибели в земной атмосфере) в среднем с периодом около 4 лет по орбите с большой полуосью в 2х/2 астрономические единицы, с эксцентриситетом того же порядка, что у периодических комет и у некоторых астероидов (0,7) и притом почти что в плоскости эклиптики.

Скорость в 42 км/сек на расстоянии Земли от Солнца — это уже скорость чуждого нам тела, движущегося по параболе. Скорость же 41 км/сек (всего на 2-3% отличающаяся от критической) уже соответствует периоду обращения лишь в 27 лет по орбите, всего в девять раз большей, чем орбита Земли.

Итак, в данном случае малейшая ошибка в определении скоростей метеоров (а их трудно определить!) ведет к совершенно новому заключению об их месте в Солнечной системе.

За последнее время скорости движения тысяч метеоров вне Земли были определены при помощи совершенно нового метода. Наблюдалось отражение радиоволн от тех следов, которые оставляют за собой метеоры. Много наблюдений метеоров радиометодами выполнено на английской станции Джодрелл Бэнк и на советской обсерватории в Душанбе. Из этих очень точных наблюдений выяснилось, что практически все метеоры движутся по эллиптическим орбитам и являются членами Солнечной системы, и, быть может, лишь единичные метеоры приходят к нам извне, как редкие гости. Так вопрос о природе метеоров решен окончательно.

Теория свечения метеоров приводит к следующим данным о массах метеоров. Масса очень яркого метеора нулевой звездной величины, если его скорость в атмосфере 55 км/сек, составляет 0,25 г. Это равно весу нескольких капель воды. Масса метеора пятой величины, едва приметного для глаза,- несколько тысячных грамма.

Так как, изучая метеоры, можно оценить их массы, то и их размеры не являются для нас тайной. Обычный яркий метеор до своего разрушения в атмосфере имеет размер кедрового орешка, а слабые метеоры, видимые только в телескоп,- размеры небольшой булавочной головки (данные о массах и размерах метеоров приблизительны). Как далеко не похожи такие тела на настоящие звезды, от которых несведущие люди отличают их только эпитетом «падающие»!

Быть может, возникает сомнение в том, как же такие крошки могут быть нами видимы на расстоянии порядка сотни километров? Но ведь видимая нами падающая звезда — не эта твердая частичка! Это необычайно ярко светящийся раскаленный пар, в который она превращается в атмосфере, пар, создающий вокруг летящей частички газовую атмосферу довольно значительного размера. Стоит также вспомнить, что нить электролампочки благодаря ее яркости видна с огромного расстояния, хотя ее толщина — сотые доли миллиметра; между тем газы, в которые обратился метеор, раскалены еще сильнее.

Поэтому не удивительно, что яркий метеор, видимый с расстояния сотни километров как звезда 2-й величины, имеет действительную силу света в 3360 стандартных (международных) свечей.

Мельчайшие космические пылинки, оседающие на Землю, — это жалкие остатки довольно значительных камешков, большая часть которых испарилась за время их полета.

Перепись метеоров

Если есть люди, почитающие за невозможное сосчитать звезды, видимые на небе простым глазом, то тем более безнадежной должна им казаться попытка сосчитать падающие звезды, да еще видимые на всей Земле, да еще в течение года. Между тем они подсчитаны, хотя, конечно, и не поштучно. Действительно, ведь когда мы хотим знать число деревьев строевого леса на участке, то для нас неважно пропустить в счете сотню-другую деревьев, и мы бываем вполне удовлетворены, узнав, что таких деревьев, скажем, около 10 000, а не около 3000 или 170 000. Мало того, наше любопытство будет частично удовлетворено, когда мы узнаем только приблизительно какое-либо число, если до этого не имели никакого о нем представления. Например, любопытно, хотя едва ли важно, знать, что в среднем у человека, еще не признанного лысым, на голове волос около 200 000, если до этого мы могли лишь гадать, сколько их, несколько тысяч или же миллионы. Наше представление об этом мало изменится, если при таком подсчете мы ошибемся на тысячу-другую волос, или даже в несколько раз больше.

Именно так, подсчитывая число метеоров разной видимой яркости в разные часы одних и тех же суток и повторяя это по нескольку раз в год, можно оценить, сколько же их падает за год. Знание этого числа удовлетворит уже не простое любопытство, а даст нам гораздо больше, в частности, может ответить на вопрос, насколько же за счет метеоров увеличивается масса Земли и какую роль их вещество может играть в составе обрабатываемой нами почвы. Вдруг окажется, что картофель на вашем огороде растет в слое, образованном вековыми напластованиями разрушившихся метеоров!

При подсчете метеоров надо учесть процент метеоров, не замеченных наблюдателем, сопоставляя одновременные наблюдения нескольких лиц, долю площади атмосферы, обозреваемой им, и метеоры, видимые лишь в телескоп.

Результаты такого подсчета приведены в нижеследующей таблице, из которой, между прочим, видно, что с ослабеванием звездной величины метеоров на единицу их число возрастает в 2 1/2 раза. Однако ослабление на одну звездную величину означает уменьшение яркости в 2 1/2 раза, и в таком же отношении уменьшается его масса (так как при одинаковой скорости яркость метеора пропорциональна его массе). Благодаря такому случайному совпадению суммарная масса метеоров каждой звездной величины оказывается одна и та же, а именно — 110 кг.

Как мы видим, «коэффициент полезного действия» метеоров, если их рассматривать как источник света, весьма велик. Если бы все метеоры, принадлежащие только к одной звездной величине и падающие за сутки, вздумали упасть одновременно в поле зрения, то они создали бы освещение, в несколько раз более сильное, чем освещение от полной Луны, а если бы все метеоры, падающие за сутки, мелькнули бы все сразу, то они осветили бы местность в 250 раз сильнее, чем Луна. И все это путем обращения в раскаленный пар лишь 5 тонн вещества на расстоянии сотни километров! Если бы они светили на расстоянии 1 км от нас, то освещение было бы еще в 10 000 раз ярче, — правда, всего лишь на секунды.

Самые яркие из метеоров, вернее, болидов, имеют яркость, соответствующую -10-й звездной величине. С другой стороны число слабых метеоров, не видимых даже в телескоп, нет нужды считать бесконечным.

С уменьшением яркости метеоров уменьшается их масса, и метеоры, которые были бы слабее 30-й звездной величины, уже настолько малы, что подобные пылинки давным-давно были бы выметены из Солнечной системы давлением света, которое для них превышает тяготение.

Таким образом, полная масса метеоров от -10 до +30 звездной величины, ежесуточно выпадающих на Землю, составляет около 4400 кг. Подсчет по таким же данным для метеоритов дает еще 5500 кг. Всего на Землю за сутки выпадает около 10 тонн метеоритного вещества.

Если с тех пор как земная кора затвердела, т. е. примерно за последние два миллиарда лет, метеоры и метеориты падали так же часто, как теперь, то на каждый квадратный километр поверхности выпало по 10 тысяч тонн метеоритного вещества, что составляет слой менее 10 см толщиной. Поэтому метеоритное вещество, хотя и примешивается к почве, но в ничтожной доле, и говорить, что наши огороды растут на метеоритной почве, нет никаких оснований.

Метеорные рои

До сих пор речь шла преимущественно о спорадических метеорах. Займемся же теперь подробнее метеорными потоками, т. е. метеорами, падающими в определенные дни года и вылетающими из определенного радианта. В табличке, помещенной ниже, приводится список потоков, наиболее богатых метеорами.

Уже из того, что метеоры, несущиеся из межпланетного пространства и вылетающие из определенного радианта, ежегодно наблюдаются в одни и те же дни, видно, что они движутся растянутым по какой-то орбите потоком. В указанные даты Земля пересекает их путь, отчего и сталкивается с ними. Если метеоры более или менее растянуты по орбите, как трамваи, идущие гуськом, друг за другом на правильных интервалах, то всякий раз, пересекая их путь, Земля будет сталкиваться с ними и встречать их примерно в одинаковом числе. Такой случай имеет место у Персеид. Земля пересекает в течение нескольких суток ту как бы космическую «баранку», которую образует растянутый рой Персеид. 12 августа она, очевидно, пересекает середину этой «баранки», где метеоры больше всего сгущены: это день максимума потока.

Легко понять, что если метеоры движутся по эллиптической орбите, обращаясь около Солнца, и распределены вдоль этой орбиты неравномерно, и имеется где-либо сгущение, то будет происходить следующее. Земля чаще будет пересекать бедные метеорами области «баранки», и их в эти годы (всегда в одни и те же дни) будет наблюдаться мало. Когда-либо Земля встретится в том же месте своего годичного пути с главным скопищем метеоров, и тогда будет обильный дождь звезд. Это можно сравнить с тем случаем, когда правильные интервалы между трамваями на трамвайном кольце нарушились, и они все сгрудились, идя в хвосте друг за другом. Не скоро случится, что, выйдя к остановке, вы сразу встретитесь с этими скученными трамваями.

Если подобное сгущение метеоров имеет очень малую протяженность, то далеко не в каждый свой приход в точку, где орбита сгущения пересекается с Землей, оно будет ее здесь заставать, — либо Земля, либо сгущение метеоров будут проходить точку пересечения орбит раньше другого, как бы играя в прятки. Вероятно, случаи такого рода бывают, но мы их пока не знаем. Действительно, периоды обращения большинства потоков должны измеряться десятилетиями, а одновременный приход в точку пересечения орбит будет происходить тогда раз в несколько столетий. Между тем научное изучение метеоров насчитывает всего лишь около сотни лет.

Определяя точно положение радианта и зная скорость метеоров, можно вычислить орбиту метеорного потока в пространстве. С течением времени эта орбита меняется благодаря возмущениям в движении метеоров, под действием притяжения планет, в особенности Юпитера.

Невозможно себе представить, чтобы метеоры, растянутые на орбите, могли бы с течением времени скучиваться. Наоборот, надо ожидать, что постепенно притяжения планет и Солнца, неодинаковые для более к ним близких и более далеких частей роя, как бы растянут этот рой по всем направлениям, но преимущественно вдоль его орбиты, так что постепенно сгущение метеоров растянется по всей орбите и образует подобие «баранки».

Рис. 93. Орбиты Леонид и Земли в пространстве

Ясно, что чем больше обращений около Солнца совершил метеорный поток, тем больше подвергался он «раздергивающим» воздействиям и тем шире и растянутее по орбите он должен быть. По степени концентрации метеоров на их орбите можно судить о возрасте этого метеорного потока, т. е. о времени, протекшем с момента его образования, хотя, конечно, при этом играет роль и период обращения и расположение его орбиты относительно планет.

Возможно, что спорадические метеоры — это «отщепенцы» метеорных потоков, частички, вырванные некогда из большой компании подобных им тел.

Многие метеорные потоки имеют не только древнее происхождение, но и древние свидетельства их появлений. В этом отношении наиболее замечательны Леониды. Они обращаются по орбите с периодом 33 года, и целые ливни метеоров из этого радианта наблюдались, например, в 1799, 1833 и 1866 гг. С их главным скоплением Земля встречалась каждые 33 года.

В 1799 г. в Южной Америке видели и впервые научно описали звездный дождь, образованный Леонидами в ноябре. Индейцы рассказали, что такое же явление было в 1766 г. Пораженные этим явлением индейцы запомнили его хорошо, тогда как европейские ученые, очевидно, не обратили на него внимания.

Рис. 94. Леониды движутся по своей орбите плотным роем

На этом основании впервые заподозрили периодичность метеорных дождей, и действительно, в 1833 г. ноябрьский дождь падающих звезд повторился. Тогда ученые обратились к летописям разных народов и проследили по ним, хотя и с перерывами, метеорный дождь Леонид вплоть до 1768 г. до нашей эры! Эту первую запись 3700 лет назад сделали китайские летописцы. Следующее упоминание о нем нашлось в арабских источниках, относящихся к 902 г. Японские летописцы отметили необычайные падения звезд в ноябре 867, 1002, 1035-1037 гг., по случаю чего напуганные японские императоры даже объявляли амнистию заключенным. Позднее летописи в разных странах все чаще и чаще, нередко с суеверным страхом, отмечают максимумы падения Леонид. Среди них для нас интересно древнерусское свидетельство, содержащееся в знаменитой Лаврентьев-ской летописи. В записях 1202 г. говорится: «В 5 часов нощи потече небо все», «течение звездное бысть на небеси, отторгаху бо ся звезды на землю». В 1533 г. говорится, что в Москве «видети мнози людие: звезды по небеси протягахуся яко же вервии, летааху с востока на зимний запад». В другой летописи это явление описывается как чудесное «знамение небесное», как «видение» пономаря Тарасия с колокольни в Новгороде-Великом: «множество ангел стреляющих огненными стрелами, яко дождь сильный из тучи».

Цветная фотография Большой туманности Ориона, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США)

По признанию американского ученого Фишера целый ряд русских летописных сведений о метеорах в прошлые века является ценным для науки и отсутствует в западноевропейских хрониках. Так древнерусские наблюдения принесли огромную пользу для современной науки.

Дождь Леонид, предсказанный в ноябре 1866 г., наблюдался повсеместно, но в 1899 г. всеобщие ожидания оказались напрасными, метеоров в ноябре было очень мало. Оказалось, что между 18Ш6 и 1899 гг. метеорный сгусток проходил вблизи Юпитера и Сатурна. Притяжение этих планет как бы оттащило в сторону его орбиту, так что с Землей встретились лишь окраины роя. В 1932 г. надежды на новую встречу опять были напрасны, и за минуту, как и в 1899 г., появлялось лишь по одному метеору. Едва ли когда-либо возмущения планет снова направят этот метеорный поток прямо на нашу Землю — незначительную пылинку в том объеме, в котором для расположения метеорных орбит так много места.

Леониды налетают на Землю почти в лоб, сталкиваясь с ее «утренним» полушарием, а их скорость, складываясь с орбитальной скоростью Земли, приводит к тому, что их скорость в атмосфере составляет 72 км/сек. При такой большой скорости испарение их в воздухе идет очень быстро, и метеоры достигают большой яркости, оставляя следы в виде быстро затухающих туманных стрел.

Если, однако, из-за возмущений от Юпитера и Сатурна мы почти что лишились поразительного зрелища, доставляемого Леонидами, то иногда благодаря тем же возмущениям случай дарит нас время от времени новыми неожиданностями. Из неведомого перед нами встают новые замечательные явления. Последним из них были Дракониды.

Цветная фотография планетарной туманности в Лире, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США)

9 октября 1933 г., как только над Европой простерлась ночная тьма, небо усеяли слабые, но многочисленные метеоры. Число их росло, и к 8 часам вечера за минуту насчитывали до 350 падающих звезд, но уже через час от них не осталось и десятой доли. К полуночи метеоры иссякли, и когда ночь добралась до Америки, то все уже было кончено, и там лишь впоследствии узнали, чем случай одарил Европу в эту ночь. Радиант метеоров лежал в созвездии Дракона. Несмотря на неожиданность явления, многие успели сфотографировать метеоры, а на одной из пластинок за 10 минут на площадке неба размером 10X10° обнаружили 26 метеорных следов.

Дракониды, долго блуждавшие в пространстве, в этом году впервые обрушились на Землю, потому что Юпитер, упорно ворочавший их орбиту, наконец привел ее к пересечению с орбитой Земли.

В последующие годы Драконид было видно мало, — признак их значительной концентрации в определенном месте орбиты. 9-10 октября 1946 г. мы опять зацепили часть главного роя и опять увидели дождь падающих звезд.

Б 1933 г. находившиеся тогда под колониальным гнетом туземцы Судана в Африке, перепугавшись злого духа, «срывающего звезды с неба», подняли барабанный бой, чтобы испугать его, так же как некогда китайцы пытались отпугнуть дракона, якобы пожирающего Солнце во время затмения.

В астрономии же сохранился из драконов только один, да и тот является просто созвездием, а о смысле названия, данного во времена древних суеверий, мы теперь редко даже и вспоминаем.

Звездные дожди не раз пугали население. Так, например, в 1833 г. неграми на американских плантациях Леониды были приняты за предзнаменование дня «страшного суда», а сто лет спустя, в 1933 г., Дракониды навели страх в отсталой и реакционной тогда Португалии, и народ повалил в церкви.

Цветная фотография Большой туманности Ориона, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США).

Прах комет

В то время как для несведущих людей метеорные дожди иногда кажутся грозным явлением, для ученых они явились, наоборот, основанием для рассеивания совершенно иных страхов, так сказать, «научного порядка», именно страхов столкновения Земли с кометой.

В этом отношении, а также для выяснения происхождения метеоров, для нас особенную ценность представила комета Биэлы и метеоры, носящие то же имя,- Биэлиды.

Австрийский офицер Белый, по происхождению чех, был любителем астрономии. Его фамилию переделали в армии на немецкий лад в Биэлу. И вот ему-то, любителю астрономии, посчастливилось в 1826 г. открыть комету, которой присвоили его измененную фамилию. Уже впоследствии выяснилось, что эта комета с периодом обращения 6 1/2 лет наблюдалась в одно из своих прежних появлений вблизи Земли и Солнца еще в 1772 г.

Мы уже упоминали о том, что при своем появлении в 1846 г. эта комета распалась на две, которые, уже сильно ослабленные в яркости и разошедшиеся друг от друга на большое расстояние, вернулись к Солнцу в 1852 г. С тех пор они как в воду канули. При следующих появлениях ни одной из них увидеть не могли, хотя место на небе, где они должны были бы быть видны, с большой точностью было вычислено заранее.

В 1872 г., через двадцать лет после таинственного исчезновения кометы Биэлы, 27 ноября небо засверкало от падающих звезд, хотя и не очень ярких. Их радиант лежал в созвездии Андромеды. Их число, как и число Драконид в 1933 г., быстро росло с конца сумерек до 8 1/2 час» вечера, достигнув в максимуме сотни метеоров в минуту, а после полуночи небо бороздилось уже лишь отдельными редкими метеорами. Орбита этих метеоров, вычисленная на основании наблюдаемого положения их радианта, оказалась сходной с орбитой пропавшей кометы Биэлы. Метеоры оказались летящими вереницей по тому пути, по которому злосчастная комета двигалась, прежде чем исчезнуть. Их взаимное родство поэтому несомненно, и даже возникает вопрос, не являются ли крошечные, но бесчисленные метеорные тельца Биэлид (или Андромедид) — всем, что осталось от хвостатой кометы. Приходится заключить, что это так, хотя перерождение кометы началось не после 1852 г., а раньше. Более подробные исследования показали вот что. Еще в 1782 г. наблюдали 27 ноября обильный поток метеоров, вероятно, тождественный только что описанному. В 1832 г. орбита кометы Биэлы по вычислениям прошла от орбиты Земли на расстоянии всего лишь в несколько тысяч километров, но на этом близком расстоянии свидание Земли и кометы так и не состоялось. До 1872 г. Земля и комета играли в прятки: то одна, то другая опаздывали к месту встречи. После 1852 г. комета не приближалась слишком близко к Юпитеру, и потому она или ее остатки должны были продолжать циркулировать по той же орбите. Встреча их с Землей была возможна, но не было точно известно, где на своей орбите они находятся, а потому время встречи предвидеть было нельзя.

В 1872 г., 27 ноября, когда метеоры заполняли небо, комета была уже далеко, на расстоянии многих сотен тысяч километров, так как она пересекла орбиту Земли на 80 дней раньше, 9 сентября.

В 1878 г. Земля явилась к точке пересечения орбит полугодом раньше, а в 1879 г. полугодом позже, чем комета. В эти годы наблюдалось мало метеоров. По истечении еще одного периода обращения комета Биэлы должна была пересечь орбиту Земли в середине января 1886 г. Однако еще немного раньше, 27 ноября 1885 г., снова посыпался звездный дождь. Его наблюдал, в частности, любитель астрономии и художник, специалист по истории Москвы, А. М. Васнецов (брат известного художника В. М. Васнецова). Он рассказывал, что метеоры появлялись как бы лениво, с промежутками около полусекунды, оставляя бледный, тусклый след, да и сами были не очень ярки, преимущественно около 3-й звездной величины. Их малая яркость объясняется тем, что Биэлидам приходится догонять Землю, и они влетают в атмосферу со скоростью всего лишь 20 км/сек.

Мы видим, что в 1885 г. рой метеоров, еще мало растянувшихся вдоль орбиты, предшествовал тому месту, в котором должна была бы находиться комета. Метеорный рой, который дал звездный дождь 1799 г., должен был зародиться еще раньше, быть может, в 1772 г., когда комета тоже приближалась к Юпитеру.

Таким образом, процесс распада ядра кометы на метеоры (именно ядра, ибо твердые частицы есть только в ядре кометы) длился не менее столетия, и образование метеоров началось задолго до исчезновения кометы как таковой.

В 1890 г., а затем и повторно в 1901 г. Юпитер возмутил движение Биэлид, и потому вблизи возможных встреч их с Землей (в 1892 и 1899 гг.) метеоров наблюдалось в ноябре очень мало. С тех пор их вообще больше не видят. Их путь пролег теперь на расстоянии нескольких миллионов километров от Земли, и крохотные, темные они несутся мимо нас, не видимые нами, вероятно, навсегда ушедшие из области, доступной нашему изучению.

Однако Биэлиды, явив яркий пример связи метеоров с кометами, не были первым звеном на пути к ее установлению.

Еще в 1866 г. итальянский астроном Скиапарелли обнаружил, что орбита Персеид близка к орбите кометы 1862 III. В 1866 г. наблюдалась другая слабая комета, и сходство ее орбиты с орбитой Леонид было тотчас же замечено сразу тремя астрономами разных стран. Вскоре затем, в результате уже специальных поисков такого рода найдено было сходство между орбитой Лирид и орбитой кометы 1861 I.

К настоящему времени около десятка метеорных потоков удалось связать с кометами. В том числе с кометой Галлея связаны Эта-Аквариды и Ориониды.

Большой интерес представляет совсем недавно выясненная связь между Тауридами и самой короткопериодической из комет, знаменитой кометой Энке. Установили, что у этих метеоров период обращения составляет 3,3 года.

По-видимому, они откололись от кометы Энке около 10 000 лет назад. Сейчас благодаря возмущениям рой отклонившихся от нее метеоров движется по орбите, уже весьма отличной от той, по которой теперь движется комета.

В следующей таблице приведен список метеорных потоков, несомненно, связанных с кометами, с указанием некоторых элементов их орбит. Из этой таблички видно, что элементы орбит «родственных» метеорных потоков и комет близки между собой. Однако в этом списке содержится лишь малая часть комет и соответствующих им метеорных потоков, известных в настоящее время. Причину этого мы сейчас разъясним.

Многие из наблюдаемых метеорных потоков могут быть нами связаны, но уже неуверенно, либо с кометами, давно исчезнувшими, либо с кометами, имеющими период обращения порядка сотни лет или больше. Надо вспомнить и о том, что не при каждом своем приближении к Солнцу комета может быть Наблюдаема. Нередко ее путь случайно располагается относительно Земли так, что в пору наибольшего приближения к Земле и к Солнцу комета упорно прячется в солнечных лучах. Случается, что ее видимости, иногда кратковременной, мешает свет полной Луны. Возможно, что из межпланетной пучины вдруг вынырнет периодическая комета, доселе еще не наблюдавшаяся, и сразу выявит свое родство с каким-либо из давно известных метеорных потоков.

Надо сознаться, что и в упомянутых примерах установления связи метеорных потоков с кометами астрономам повезло. Как только впервые были определены орбиты трех метеорных потоков, явились три слабые кометы и… счастливый случай. Комета 1861 I, родоначальница Лирид, имеет большой период обращения, и следующее ее появление будет лишь через несколько столетий. Комета 1862 III, рассеявшая по своей орбите Персеиды, также вернется в следующий раз к Солнцу лишь в конце текущего столетия. Спутница Леонид, комета 1866 I, хотя и оборачивается около Солнца за 33 года, но в 1899 и в 1932 г. была расположена на небе так близко к Солнцу, что ее, старую знакомую, так и не видели.

Проскользни тогда эти три кометы незамеченными, что зачастую бывает со слабыми кометами и сейчас, мы бы еще не скоро обнаружили связь метеорных потоков с кометами и не знали бы, могут ли они сосуществовать на одной и той же орбите.

Можно себе представить, как пришлось бы астрономам ломать голову над происхождением метеоров и какие, быть может, фантастические гипотезы пришлось бы при этом строить! Мы видим, что успехи науки, плод планомерного и длительного труда, иногда зависят и от счастливого стечения обстоятельств. Не надо, однако, забывать, что одного счастливого случая мало, надо уметь им воспользоваться, быть к нему подготовленным.

Наше замечание об удачном появлении комет можно отнести и к метеорам. Данные для предыдущей таблички накопились за целое столетие. В текущем веке Биэлиды не дали ни одного метеора. Дракониды — один из наиболее богатых метеорных потоков — появились совсем недавно, и совсем немного лет назад одной строчкой в таблице было меньше.

В 1916 и 1921 гг. появилось немного слабых метеоров, связанных с кометой Понса — Виннеке, но в 1922 и 1923 гг. автор этой книжки тщетно ожидал их появления в июньские ночи. Бодрствование оказалось напрасным — метеоров не было. Едва став доступными для изучения, они возмущениями планет снова были удалены от земной орбиты, и это добавление к нашему списку остается под некоторым вопросом.

В сравнении с числом комет, бороздящих Солнечную систему, как рыбы ?кеан, число комет, замечаемых нами, невелико, и еще ничтожнее число тех, о которых мы знаем, что они сопровождаются продуктами их собственного разложения — метеорами. Ни одна из комет, движущихся по огромным эллипсам, приближающимся к параболам, с афелиями, лежащими за пределами орбиты Плутона, не показала нам своих метеоров.

Редко проходя вблизи больших планет, они, вероятно, мало разрушились, и их метеоры мало растянулись вдоль орбиты. Если же они и растянулись вдоль нее, то летят далеко друг от друга и сталкиваются с Землей «в рассрочку», в разные годы и в таком малом числе, что из наблюдений невозможно установить их радиант, а следовательно, нельзя вычислить и их орбиту.

Перигелии большинства комет, даже периодических, лежат вне земной орбиты, и без особенно больших возмущении их метеорам никогда не суждено встретиться с Землей. Небольшое число комет с орбитами, пересекающимися с орбитой Земли, имеют короткие периоды обращения и потому быстро распадаются, давая доступные для наблюдения метеоры, но те же возмущения, что породили и рассеяли эти метеоры, опять-таки быстро выводят их из области видимости.

Мы уже упоминали, что в метеорных потоках частицу от частицы отделяют сотни километров. Зная диаметр Земли, время, необходимое для пересечения ею метеорного потока, и число их, попадающих в атмосферу, можно оценить полную массу метеоров в потоке.

Для Персеид такой ориентировочный подсчет дает массу в 500 миллионов тонн. Это число поражает нас своей грандиозностью, но в сравнении с массами небесных тел оно ничтожно. На образование Земли пошел бы миллион миллиардов таких метеорных потоков, тогда как массы одного потока хватило бы только на сантиметровый слой пыли, которой можно было бы засыпать, например, Крымский полуостров.

Спектры метеоров, полученные теперь в достаточно большом числе, показывают, что все метеоры, входящие в периодические потоки, — каменистого строения, тогда как из числа спорадических метеоров половина приходится на каменные и половина на железные.

Это обстоятельство как будто мешает нам считать, что все спорадические метеоры, так же как и периодические потоки метеоров, произошли от комет и являются продуктом разложения метеорных роев. Быть может, часть их, именно железные, имеет иное происхождение. Какова их суммарная масса в Солнечной системе, оценить невозможно. Во всяком случае, метеоры и даже метеорные потоки в бесчисленном множестве снуют по Солнечной системе, и лишь ничтожная часть их доступна нашему наблюдению.

Наблюдая метеоры, мы до некоторой степени похожи на собирателя насекомых, идущего в летний день по необозримым лугам по узкой тропинке и подбирающего на ней лишь те экземпляры, которые ему подарит случай.

Все же мы должны быть удовлетворены уже тем, что установили неоспоримую связь некоторых метеоров с кометами.

Метеоры в атмосфере

Мы развенчали падающие звезды в качестве подлинных звезд — этих величайших небесных тел — и признали в них лишь ничтожные камешки. Эти камешки, пока они несутся вне земной атмосферы, — ничтожные, но все-таки небесные тела, и изучение их как таковых увело нас в глубины межпланетного пространства, заставило обратиться к другим и гораздо более значительным небесным телам — кометам. Но, попав в атмосферу Земли и светясь в ней короткое время, и метеор и метеорит уже перестают быть по существу небесными телами. Их полет в воздухе сопровождается особыми интересными явлениями, причем маленький камешек-метеор уже перестает при этом быть таковым, почему некоторые ученые предлагают все такие камешки называть метеорными телами, а под метеором понимать лишь само явление свечения во время его полета в атмосфере. Нам кажется, что в этом нет особой нужды и это вызывает свои неудобства, но уделим некоторое внимание тому, почему и как метеоры, оказавшись в атмосфере, становятся видимы, и что нам дает изучение этих явлений для познания нашей собственной планеты…

Беззвучно катящаяся по небу звезда, осколок далекой кометы и орудийные залпы, обстрел и бомбежка мирных тыловых городов, что, кажется, может быть общего между ними?!

1918 год… Немецкие армии рвутся к Парижу, но они далеко, определенно известно, что враг не ближе 120 км от города, оснований для паники нет. И вдруг… в окрестностях Парижа начинают рваться большие снаряды. Что же думать… Где враг?

Оказалось, что немцы создали сверхдальнобойные пушки, которые могли стрелять на дистанцию в 120 км. Эти орудия выбрасывали снаряды весом 120 кг из ствола длиною 37 м с начальной скоростью 1700 м/сек под углом 55° к горизонту. В этом и заключался главный секрет сверхдальности. Быстро прорезав нижние плотные слои воздуха, снаряд забирался в верхние разреженные слои земной атмосферы, далеко в стратосферу, на высоту 40 км. Там разреженный воздух мало тормозил его движение, и вместо нескольких десятков километров снаряд пролетал сотню километров. Надо сказать, что стрельба немцев не была очень меткой; они рассчитывали больше на создание паники.

Известную долю неточности их стрельбы обусловила невозможность рассчитать точно условия полета снаряда на большой высоте. Ни плотность, ни состав, ни движение воздуха на этой высоте не были тогда известны; атмосфера на этих высотах не была еще изучена. Действительно, даже стратостаты, поднимавшие впоследствии людей с научными приборами, достигли высоты всего лишь около 22 км, а воздушные шары с самопишущими приборами без людей поднимались до 30 км. Ракеты, поднимающиеся на высоты более 100 км, стали пускать только после второй мировой войны.

О более высоких слоях воздуха раньше можно было составить представление лишь путем изучения происходящих там явлений, и метеоры, ежедневно пронизывающие их, все еще доставляют один из лучших косвенных методов такого рода. Лишь совсем недавно на вооружение ученых поступило такое мощное средство всестороннего исследования верхних слоев атмосферы, как искусственные спутники Земли. Вот почему усиленное изучение метеоров было важным пунктом программы проведения Международного геофизического года (1957-1958 гг.).

Метеоры являются невольными разведчиками стратосферы, и наша задача — научиться их опрашивать. Вот к чему приводят результаты такого опроса, начатого всего лишь лет тридцать назад.

Метеорные тела вторгаются в атмосферу со скоростью, примерно в сотню раз большей скорости ружейной пули в начале ее пути. Как известно, кинетическая энергия, т. е. энергия движения тела, равна половине произведения квадрата его скорости на его массу. Вся эта энергия метеора идет на излучение тепла и света, на раздробление тела на молекулы, на разрушение молекул тела и воздуха на атомы и на ионизацию этих атомов.

Молекулы и атомы твердого тела, и метеора в том числе, часто расположены в некотором определенном порядке, образуя так называемую кристаллическую решетку. С чудовищной скоростью метеор врезается в воздух, и молекулы, из которых состоит воздух, с силой втискиваются в молекулярную решетку метеорного тела. Чем дальше влетает метеор в земную атмосферу, тем плотнее там воздух и тем больше и больше молекулярная решетка метеорного тела подвергается ожесточенной бомбардировке молекулами воздуха.

Лобовая часть метеора в конце концов получает ливень таких ударов, при которых молекулы воздуха вонзаются в метеор, проникают внутрь него, как снаряд в железобетонный дот. Этот «обстрел» передней поверхности нарушает связи между молекулами и атомами тела, ломает кристаллические решетки и вырывает из них отдельные молекулы вещества метеора, накапливающиеся уже в беспорядке на его лобовой поверхности. Часть молекул расщепляется на атомы, из которых они состоят. Некоторые атомы от ударов даже теряют входящие в их состав электроны, т. е. ионизуются, приобретая электрический заряд. Отколотые электроны, время от времени скользя слишком близко к ионам, захватываются ими на «вакантные места» и при этом, в соответствии с законами физики, излучают свет. Каждый атом излучает свои длины волн, отчего спектр метеора и есть ярко-линейчатый спектр, характерный для свечения разреженных газов.

Чем глубже в атмосферу, тем быстрее идет разрушение метеора и сильнее его свечение. На высоте ниже 130 км над Землей оно уже достаточно, чтобы сделать метеор видимым для нас.

Молекулы воздуха тоже страдают при ударах, но они прочнее молекул и атомов метеора и реже ионизуются, кроме того, они не так сильно сконцентрированы и потому дают столь слабое свечение, что линии газов, составляющих атмосферу (в основном кислорода и азота), мы в спектре метеора не замечаем.

Ниже в атмосфере воздух перед лобовой поверхностью метеора образует «шапку», состоящую из сжатых газов, в которые превращается метеор, и отчасти — из газов сжимаемого им перед собою воздуха. Струи сжатого и горячего газа обтекают метеорное тело с боков, отрывая от него новые частицы и ускоряя разрушение камешка.

Более крупные метеорные тела проникают глубоко в атмосферу, не успев целиком превратиться в газ. Для них торможение приводит к потере их космической скорости на высоте 20-25 км. Из этой «точки задержки», как ее называют, они падают уже почти отвесно, как бомбы с пикирующего самолета.

В низких слоях атмосферы обилие твердых частиц, сорванных с боков метеорного тела и отставших от него, образует за ним «дымный» черный или белый пылевой след, часто видимый при полете ярких болидов. Когда такое тело достаточно велико, то в разрежение, образующееся за ним, устремляется воздух. Это, а также сжатие и разрежение воздуха на пути большого метеорного тела вызывают звуковые волны. Поэтому полет ярких болидов сопровождается звуками, похожими иногда на выстрелы и на раскаты грома.

Как яркость, так и цвет метеоров и болидов создается не накаливающейся твердой поверхностью, которая ничтожно мала, а частицами вещества, обращенными в газ. Поэтому цвет их зависит не столько от температуры, сколько от того, какие из светлых линий в его видимом спектре являются наиболее яркими. Последнее зависит от химического состава тела и от условий его свечения, определяемых его скоростью. В общем все-таки красноватый цвет сопровождает меньшую скорость движения.

Такова в кратких чертах картина свечения метеорных тел в атмосфере, которую рисует современная наука.

Остановимся на некоторых подробностях этих явлений, изученных совсем недавно и связанных с изучением стратосферы. Например, исследование торможения метеоров проливает свет на изменения плотности воздуха с высотой. Чем больше плотность воздуха, тем сильнее, конечно, торможение, но торможение зависит и от скорости движения и от формы тела, отчего самолетам, автомобилям и даже локомотивам стремятся придать «обтекаемую форму». Тело «обтекаемой» формы лишено острых углов и рассчитано так, чтобы при быстром движении воздух обтекал его, встречая как можно меньше помех, сопротивления, и потому меньше тормозил движение.

Артиллерийские снаряды испытывают в полете огромное сопротивление воздуха. Метеорные же тела летят в воздухе со скоростью, в десятки раз превышающей скорость снаряда, и для них сопротивление воздуха еще больше. По снимку метеора, полученному однажды в Москве любителями астрономии, членами Астрономо-геодезического общества, фотокамерой с сектором, вращающимся перед объективом, для одного метеора нашли торможение (которое часто называют отрицательным ускорением) около 40 км/сек2. Это в 400 раз превосходит ускорение свободного падения тел под действием силы тяжести! И это на высоте 40 км над Землей, где воздух так разрежен, что человек там немедленно погиб бы от удушья.

Для того чтобы звук был слышен, воздух должен иметь определенную плотность. В безвоздушном пространстве звуков нет, и как колокольчик в вакууме под колпаком воздушного насоса на лекции по физике старается напрасно, так и в безвоздушном межпланетном пространстве мировые катастрофы происходят беззвучно. Грандиозный взрыв «новой звезды» или столкновения звезд (впрочем, почти невероятные) происходят так бесшумно, что, находясь вблизи от них в момент катастрофы, мы бы даже не обернулись, если бы это произошло у нас «за спиной».

Рис. 95. Строение земной атмосферы

Характер звуков при полете болидов говорит нам многое о плотности верхних слоев атмосферы.

Хорошую возможность изучения воздушных течений в высоких слоях атмосферы нам доставляют следы, остающиеся в небе после полета ярких метеоров и болидов; 20-80 км — вот их высота над нашими головами.

Сколько времени видны пылевые следы, зависит от условий освещения и от количества вещества, превращенного в мельчайшую взвешенную в воздухе пыль. Играют тут роль и воздушные течения, разносящие пылинки в стороны и «заметающие» след болида. В исключительных случаях след болида бывает видим в течение 5-6 часов.

Серебристые следы, видимые ночью после пролета быстрых и ярких метеоров, имеют другую природу, — они газовые и лежат всегда выше 80 км. При огромной скорости соударяющихся молекул вдоль пути метеора происходит сильная ионизация молекул воздуха, чему помогает и ультрафиолетовое излучение метеора. В образовавшемся за метеором цилиндре ионизованного воздуха медленно происходит воссоединение ионов с электронами, медленно потому, что при большой разреженности воздуха на такой высоте наэлектризованные частички далеки друг от друга и проходят длинный путь, прежде чем воссоединятся снова. Процесс их воссоединения, как всегда, сопровождается излучением линий спектра. В то же время ионизованные молекулы разлетаются в стороны, и ширина следа растет. От этого яркость следа, конечно, ослабевает, ко иные следы (видимые обычно только несколько секунд) остаются на небе среди звезд иногда даже в продолжение часа.

Непрестанная ионизация воздуха метеорами способствует поддержанию на высотах от 80 до 300-350 км над Землей ионизованных слоев. Основная причина их возникновения — ионизация воздуха солнечными световыми (ультрафиолетовыми) и корпускулярными лучами (потоками наэлектризованных частиц).

Может быть, не все знают, что именно этим слоям мы обязаны тем, что на коротких волнах можно переговариваться с любителями-коротковолновиками, живущими на Малайском Архипелаге или в Южной Африке. Радиоволны, излучаемые передатчиком и падающие на эти слои под определенным углом, благодаря его электропроводности отражаются как от зеркала. Они не уходят в мировое пространство, а, отразившись вниз, почти с полной силой принимаются где-либо очень далеко от передающей радиостанции.

Это явление отражения радиоволн связано и с длиной радиоволны. Можно изучить плотность ионов в электропроводящем атмосферном слое, меняя длину волны и определяя, когда радиопередача прекратится, т. е. когда радиоволны не отразятся, а ускользнут из земной атмосферы. Другие радионаблюдения позволяют следить за высотой слоев, которая несколько колеблется.

Как и можно было ожидать, обнаружено, что изменение числа метеоров, влетающих в атмосферу, и даже появление отдельных ярких болидов меняет силу радиоприема на коротких волнах, вызывая быстрые, кратковременные изменения электропроводности воздуха благодаря его ионизации на высотах 50-130 км. Большие возмущения в силе радиоприема далеких станций были, например, отмечены на Слуцкой обсерватории под Ленинградом в часы метеорного дождя Драконид 9 октября 1933 г.

Так радиосвязь неожиданным образом реагирует на появление бренных остатков комет, светил, казалось бы, таких безразличных для повседневных дел на нашей Земле!

Девяносто лет назад известный московский астроном В. К. Цераский случайно заметил летом необычные серебристые облака, светившиеся на ночном небе в северной его части. Это не могли быть обычные облака, плавающие не выше 8, в крайнем случае 12 км над Землей. Если б это были они, то Солнце, находящееся под горизонтом, не могло бы достать их своими лучами и заставить так ярко светиться. Это должны были быть необыкновенно высокие облака. И действительно, сравнение зарисовок их положения на фоне звезд, сделанное одновременно с двух разных мест (В. К. Цераским и А. А. Белопольским), позволило первому из них впервые доказать, что эти облака разгуливают на высоте 80-85 км. С тех пор их наблюдали не раз всегда летом и в северной части неба, вблизи горизонта, так как даже на такой большой высоте и только при этих условиях солнечные лучи могут их осветить из-под горизонта.

Эти ночные «светящиеся» или «серебристые» облака, как их называют, упорно держатся всегда на высоте 82 км. Быть может, эти облака, лежащие близ нижней границы погасания метеоров, образованы кристалликами льда, намерзшими на пылинки.

Рис. 96. Светящиеся, или серебристые облака, находясь на большой высоте, освещаются лучами Солнца, находящегося под горизонтом. (Фотография сделана в Свердловске в 1928 г.)

Что в воздухе на высоте 80 км, где он, казалось бы, должен быть так «чист» (вспомните чистоту воздуха хотя бы в горах!), есть пыль, это еще, казалось бы, куда ни шло. Но что бы вы подумали, если бы вам кто-либо сказал о металлической атмосфере над нашей головой!

Мы справедливо отвергли наивные представления древности о «небесной тверди», о «хрустальных небесах» над нашей головой и вдруг признаем… чуть ли не металлическое небо!

В самом деле, в 1938 г. спектроскоп в руках французских астрофизиков Кабанна, Дюфэ и Гозй с убийственным хладнокровием показал, что в спектре ночного неба постоянно есть известная желтая линия натрия и линии кальция. Кроме этих металлов, ученые надеются обнаружить в атмосфере еще алюминий и даже железо! (Кстати сказать, чтобы получить спектр света ночного неба, которое и так-то кажется почти черным, т. е. почти не испускающим света, приходится делать многочасовые экспозиции.) Металлы, найденные в атмосфере, относятся к высоте 130 км над Землей и, конечно, никакого твердого купола не образуют. Отдельные атомы названных металлов единицами насчитываются среди многочисленных молекул крайне разреженного воздуха на этой высоте. По-видимому, атомы металлов рассеиваются в атмосфере при испарении метеоров и светятся при соударении с другими частичками. В самом деле, так или иначе, а продукты испарения метеоров, т. е. по преимуществу атомы тяжелых элементов, должны не только оставаться, но и накапливаться в атмосфере. Будут ли они там светиться или нет — это вопрос особый, но нет никаких причин, чтобы, рассеиваясь на высоте порядка сотни километров, они могли тотчас же опуститься на землю.

Рис. 97. Две фотографии яркого метеорного следа, полученные с перерывом в несколько минут Д. Дебабовым на Чукотке (1941 г.)

Итак, метеорное вещество есть везде, оно лежит у нас под ногами, оно непрерывно путешествует в пространстве, оно висит у нас над головой.

Изучение метеорных явлений дало много ценного для познания стратосферы. Не все из этих выводов, как, например, первые выводы зарубежных ученых Линдемана и Добсона, являются бесспорными в очень молодой науке о движении метеоров в атмосфере, но они все же иллюстрируют, какие возможности тут открываются перед нами. А выводы эти вот какие. Исходя из своей теории свечения метеорных тел в атмосфере, рассматривающей взаимодействие с воздухом летящего метеорного тела, упомянутые авторы в 1923 г. объяснили особенности в распределении по высоте точек погасания метеоров и заключили, что на высоте около 60 км воздух сильно нагрет. Они вычислили там температуру, и она оказалась равной +30°, а позднейшие вычисления привели даже к температуре 110°. (Не будем говорить, что на этой высоте температура оказалась выше точки кипения воды, потому что при тех малых давлениях воздуха, какие имеют место в стратосфере, температура кипения воды много ниже, чем 100° С.)

Рис. 97. Две фотографии яркого метеорного следа, полученные с перерывом в несколько минут Д. Дебабовым на Чукотке (1941 г.)

Это открытие явилось сюрпризом, потому что непосредственные промеры температуры до высоты в 30 км показывали сначала быстрое падение температуры с высотой, а с 11 км (нижней границы стратосферы) начинался слой с почти постоянной температурой в 50° мороза, независимо от времени года и климатического пояса местности. Вернее говоря, стратосфера ведет себя даже «шиворот навыворот»: зимой, даже в полярных странах, ее температура около -45°, а летом и в тропиках около -90°. Тропосфера, или нижний слой земной атмосферы, характеризуется падением температуры с высотой и над экватором распространяется выше (до 15-16 км), чем у полюсов Земли (9-10 км). Эта верхняя ее граница — конец изменения температуры — и определяет начало стратосферы, до известной степени объясняя неожиданное распределение температуры стратосферы по климатическим поясам, так как температура стратосферы равна температуре верхней границы тропосферы. Сезонные же и неожиданные изменения ее температуры тоже связаны с сезонным изменением в высоте границы тропосферы, так как воздух нагревается преимущественно снизу, землей, а зимой земля менее нагрета и прогревает атмосферу до меньшей высоты.

Изучение метеоров неожиданно открыло существование нового повышения температуры с высотой, как говорят, верхней температурной инверсии в стратосфере. Стратонавту, поднявшемуся в меховом костюме в стратосферу, если он сможет подняться выше 40 км, будет, пожалуй, труднее защищаться от жары, которая сменит там 50-градусный мороз, господствующий ниже.

Существование верхней температурной инверсии подтверждается изучением торможения метеоров по фотографиям с вращающимся сектором. Это торможение уменьшается в той самой области, где предположено повышение температуры, как и должно быть. В последнее время температура +50° С на высоте 60 км найдена и прямыми измерениями при помощи приборов, установленных на ракетах, запускавшихся в стратосферу.

С точки зрения изучения стратосферы интересно также, что скорость расползания газовых светящихся метеорных следов связана с давлением и температурой окружающих слоев воздуха и позволяет оценить их величину.

Раньше стратосферу считали областью невозмущенного покоя, застывшего в неподвижности воздушного океана, относя всякие ветры и перемещения воздушных масс к области тропосферы. Поэтому полной неожиданностью явш4ьсь обнаружение советскими учеными И. С. Астаповичем, В. В. Федынским и другими воздушных течений на высоте 80 км над Землей, со скоростями, доходящими до 120 м/сек, относящих метеорные следы преимущественно к востоку, но иногда и в другую сторону; встречаются даже и вертикальные течения.

Изучение метеоров в связи со свойствами стратосферы только что началось, и приведенные данные являются лишь первым его даром, могущим убедить в пользе этой отрасли астрономии даже наиболее скептически настроенных людей.

Новые методы изучения метеорных тел

В атмосфере Земли был обнаружен ряд электропроводящих слоев, состоящих из ионизованных молекул воздуха. Роль этих слоев велика — они действуют на радиоволны, как зеркало, отражая их вниз. Благодаря им возможна радиосвязь вокруг земного шара. Отражаясь по многу раз, радиоволны обегают земной шар между его поверхностью и электропроводящими слоями.

Отражение радиоволн электропроводящими слоями атмосферы сделало возможным определение высоты этих слоев. Оказалось, что они находятся на разных высотах, начиная с 50 км над Землей, с максимумом ионизации на высоте 250-300 км, и возникают под ионизующим действием ультрафиолетовых солнечных лучей и частичек (корпускул), выбрасываемых с поверхности Солнца. С изменениями в излучении Солнца, сопровождающими изменения на его поверхности, меняются также высота и толщина электропроводящих слоев земной атмосферы.

Некоторую роль в ионизации воздуха играют и проникающие в него метеоритные частички. Испаряясь при нагревании вследствие торможения, частицы метеорного тела, дающие картину «падающей звезды», сталкиваются с частицами воздуха, ионизуя их и ионизуясь сами. Область таких частичек, остающихся на пути полета метеора, видна нам в виде метеорного следа в течение долей секунды, а иногда даже нескольких минут.

Наэлектризованные частицы в метеорном следе должны отражать радиоволны.

В ночь с 9 на 10 октября 1946 г. многие астрономы подстерегали новое появление дождя падающих звезд — Драконид, обрушившегося на ленинградское небо в эти же дни в 1933 г. Эти метеоры — осколки ядра кометы Джакобини — Циннера, имевшей период обращения около Солнца в 6 1/2 лет. Впервые ее метеоры встретились с Землей еще в 1926 г., но тогда их было мало. 9-10 октября Земля сближается с орбитой кометы, вдоль которой рассеялись осколки ее ядра. В 1946 г. Земля должна была встретиться с метеорами, отставшими от своего ядра на 230 млн. км, т. е. находящимся ближе к ядру, чем те, с которыми она встретилась в 1933 г.

Но обстоятельства сложились неблагоприятно. В это время свет яркой Луны мешал видеть не очень яркие метеоры. Число метеоров, видимых вечером, было очень мало и очень медленно нарастало к утру. Очевидно, максимум их приходился на светлое время суток, когда на ярком утреннем небе метеоры невозможно было видеть.

Рис. 98. Метеоры на экране радиолокатора (схема и фотографии)

Однако их «увидели» радиолокаторы, которые 9 октября 1946 г. впервые пришли на помощь охотникам за метеорами. Быстро посылая радиоизлучение в разные стороны неба, радиолокаторы в то же время ловили и регистрировали каждое отражение его от ионизованного следа метеора. Погода почти всюду была ясная, но если бы небо было закрыто тучами и шел проливной дождь, радиолокаторы делали бы свое дело с таким же успехом — для посылаемых ими радиоволн тучи столь же прозрачны, как чисто протертое стекло для лучей прожектора.

Так радиолокаторы дали знать, что в 6 час. 10 мин. по московскому времени по небу пролетало 150 метеоров за минуту — это был максимум. К 9 час. утра число метеоров сошло на нет. Как мы видим, слой метеоров был очень тонок, Земля прошла его практически за 2-3 часа, а главную его часть — за 40 минут, чему соответствует толщина 35 000 км, т. е. всего лишь в три раза большая поперечника самой Земли…

Рис. 98. Метеоры на экране радиолокатора (схема и фотографии)

Наблюдения метеоров с помощью радиолокаторов проводятся теперь все шире и шире. Передатчик мощностью до нескольких тысяч киловатт посылает направленные волны, вращая свой луч. Радиоволна, попадая на след метеора, отражается обратно и отмечается время прохождения сигнала, дающее расстояние до метеора. Расстояние от летящего метеора до наблюдателя меняется; меняется также время прохождения сигнала от разных точек пути метеора. На верхнем рис. 98 схематически показаны пути метеоров (I, III) и соответствующая картина на экране радиолокатора (IV). Форма кривой позволяет определить быстроту полета. Легко понять, что чем быстрее полет, тем быстрее меняется расстояние до метеора и тем круче кривая на экране II, направленная вершиной книзу. На рисунке приведены кривые, соответствующие двум различным скоростям движения. Нижняя точка кривой отмечает время Т0, когда метеор проходит на кратчайшем расстоянии от наблюдателя. В виде кривой получается запись с экрана полета головной части метеора, а запись остающегося и расплывающегося следа его — в виде широкой полосы (IV). Примеры таких записей даны на схеме IV внизу, правее записи от трех метеоров, из которых только метеор б миновал наблюдателя и удалился. Метеоры айв оставили за собой следы, постепенно таявшие. Фактический вид экрана радиолокатора показан на нижних фотографиях.

Наблюдения с мощными радиолокаторами позволяют наблюдать метеоры гораздо более слабые, чем те, которые видны невооруженным глазом, а тем более на фотографиях. На карточках, идущих затем в математическую обработку на автоматические машины, зарегистрированы уже многие миллионы метеоров. Сотни тысяч их наблюдались также и визуально.

Исследование метеорных тел стало теперь доступно также при помощи искусственных спутников Земли и межпланетных автоматических станций.

Мы можем на ракетах регистрировать удары метеоритов. С разными, но большими скоростями эти, чаще всего мелкие, частицы вещества бороздят Солнечную систему. Мы можем теперь определять частоту встреч с ними ракеты, их размеры, массы и их пробивную способность.

В межпланетном безвоздушном пространстве даже довольно мелкие частицы могут пробить космический корабль. Тогда они лишат его герметичности, повредят аппаратуру, могут погубить экипаж. В результате исследований на советских искусственных спутниках и космических аппаратах впервые было установлено, что эта метеорная опасность не так велика, как опасались. Спутники и станции подавали свои радиосигналы на Землю без помех в течение очень долгого времени, т. е. не были повреждены ударагли метеоритов.

Для изучения межпланетных метеорных частиц применяли разные методы. Одни аппараты накапливали энергию ударов метеорных тел. Посредством запоминающих устройств и телеметрии они сообщали на Землю суммарную мощность этих ударов. Другие приборы регистрировали отдельно каждый удар или их частоту и т. д. Как и ожидали, оказалось, что чем мельче метеоры, тем их больше.

Иногда автоматические станции встречали потоки метеорных тел, циркулирующих вокруг Солнца по определенной орбите. Число их в единице объема менялось со временем. За тысячу секунд на квадратный метр отмечалось два удара частиц со средней массой около 5•10-9 г, а частиц более крупных было раз в пять меньше. Однажды частота ударов возросла в 10 000 раз.

Эти мелкие и многочисленные удары регистрировались чувствительными приборами, но они не вредили межпланетной лаборатории. С более же крупными метеорными телами межпланетные станции, видимо, не сталкивались и опасность с их стороны не так уж велика. Впрочем, возможно, что сигналы межпланетной станции, запущенной в СССР в 1962 г. к Венере, прекратились досрочно вследствие столкновения ее с метеоритом.

До последнего времени энергию и массу метеорных тел приходилось рассчитывать только теоретически, исходя из определения скорости и яркости метеоров. Расчеты были очень неуверенными и разноречивыми. За пределами земной атмосферы даже крупные метеорные тела остаются невидимыми. Они там недоступны для изучения. Теперь же их энергия движения измеряется непосредственно космическими станциями.

16-18 ноября 1959 г. станция «Авангард-3» (США) отметила резкое увеличение числа метеоритных ударов, иногда до 200 за шестиминутный интервал, хотя за один из двухчасовых оборотов этого искусственного спутника Земли не было отмечено ни одного удара. Это указывает на то, что данные метеорные тела, по-видимому, принадлежавшие ежегодному потоку Леонид, мало еще рассеялись поперек орбиты породившей их кометы. Всего за трое суток ударов было отмечено 2800, почти столько же, сколько за остальные 75 суток «работы» этого спутника. При относительной скорости частиц 70 км/сек и плотности, как у льда, их диаметр был около 7 микрон. Все эти частицы по размеру и массе были меньше тех, которые производят в атмосфере явление падающих звезд, видимых невооруженным глазом и даже в телескоп. Лучшую возможность изучить распределение по размерам и по скорости метеорных частиц в пространстве представит изучение их с поверхности Луны, где нет атмосферы. Их падения на Луну еще ни разу не причинили неприятности космонавтам, находившимся на ней длительное время. К изучению же более редких, но и более крупных метеоритных тел мы перейдем в следующей главе.