III. Астрономии в астрономии

1. Храм и музы Урании

С этой главы, собственно, и начинается наш разговор об избранном предмете. Определение, вынесенное в качестве эпиграфа, звучит несколько академично. С этим можно согласиться. Но зато как кратко, как исчерпывающе! А краткость — сестра того качества, которое всяк легко отыщет у себя и с трудом признает у другого.

Итак, астрономия. За неопределенное время своего существования на месте скромной обители звездочетов выросло огромное здание весьма причудливой архитектуры. К сожалению, при всем старании автор не нашел исчерпывающего описания этого здания в каком-нибудь одном источнике. Оттуда можно было бы перенести его на эти страницы, снабдив красивой сноской.

Очевидно, для людей искушенных в здании сем все ясно и без проспекта, а неискушенным… Ну, тут могут быть варианты. А так как, по идее, эта книжка должна служить некоторым путеводителем в избранной области, то первейшей обязанностью автора все-таки является проведение небольшой экскурсии по башням и залам фантастической постройки, какой сегодня является храм музы Урании. Мы не будем брать на себя смелость знакомить читателя основательно. Сие — прерогатива науки. Пробежимся по залам туристским галопом, чтобы просто иметь некоторое представление. Право, это сделать стоит. В конце концов такая экскурсия поднимает эрудицию.

Мы начнем знакомство с самого «земного» и едва ли не самого древнего раздела астрономии. Называется он Астрометрия .

Занимается она сугубо практическими вопросами, связанными с направлениями на светила. Знать истинное направление, а значит, никогда не терять дороги — древняя проблема. Может быть, именно поэтому в основу теории астрометрии положено старое как мир понятие о «небесной сфере», то есть об огромном мяче или скорлупе произвольного радиуса, центр которого всегда помещается в глазу наблюдателя. (Отсюда некоторое зазнайство астрометристов — они всегда считают себя центром мироздания.)

На внутренней поверхности «небесной сферы» расположены звезды. И вся эта довольно громоздкая система вращается на воображаемой оси мира. При этом коренные подшипники оси — полюса — находятся: один рядом с Полярной звездой — Северный полюс мира, другой… Впрочем, координаты Южного полюса, к сожалению, не отмечены таким же наглядным ориентиром. Так что для его отыскания проще всего поехать в Антарктиду и там — по отвесу, по отвесу…

Чтобы уточнить задачи, которые ставит перед собой астрометрия, осмотримся в помещениях, занимаемых этой почтенной наукой. На первом месте здесь Сферическая астрономия — это математический мозговой центр астрометрии. Он учитывает изменения небесных координат и разрабатывает методы исправления ошибок. Причем разрабатывает довольно удачно. Помните: «…Советское правительство просит все суда, совершающие рейсы по Тихому океану, в период с такого-то и до такого-то числа не заходить в район, обозначенный координатами…» И знаете, никто не заходит. Ракеты, пущенные из другого полушария, летят с поразительной точностью. В числе прочих есть в том заслуга и сферической астрономии. На тучной ниве этого подраздела пасутся табуны математиков. Математический аппарат капризен. За ним нужен глаз да глаз. Ну как устареет, перестанет расти, развиваться, совершенствоваться. Задачки-то день ото дня все сложнее.

Следующий подраздел — Фундаментальная астрономия . Ее основная задача — точное определение координат звезд, поиск и установление неких «опорных точек на небесной сфере», чего-то вроде «печек», от которых начинаются все танцы. Главное богатство фундаменталистов — вереницы ящиков с негативами ночного неба. Снимки пяти-, десяти… пятидесятилетней давности. Если на минуту углубиться в область фантастики, то заветной мечтой молодых, увлеченных жрецов фундаментальной астрономии наверняка является отыскание негативов, полученных Тихо Браге или, еще лучше, Гиппархом. Сравнивая положение звезд на фотографиях, разнесенных во времени на десятилетия, астрономы выводят законы движения светил, составляют фундаментальные каталоги звезд, строят основную систему координат на небесной сфере.

Работа фундаменталистов граничит с фантастикой. Ну кто может похвалиться, что знает, как выглядело звездное небо… пятьдесят тысячелетий назад? Или как оно будет выглядеть через такой же срок в будущем? Никто! А фундаменталисты могут!

Вот посмотрите, на первом рисунке иллюстрации на странице 65 как раз ковш Большой Медведицы 50 тысяч лет назад.

На втором — ее сегодняшняя фотография. А на третьем — столь же отдаленное будущее. Кто не верит, подождите. Через 500 веков увидите Б. Медведицу, тогда поговорим.

Дальше расположены чертоги Практической астрометрии . «Наконец-то!» — воскликнет обрадованный прагматик и тут же задумается: чем может заниматься практическая астрометрия в наше время? А между тем она по-прежнему решает задачи сугубо практические: помогает определять местонахождение наблюдателя на поверхности Земли, ориентироваться на местности, определять время и вообще делает множество весьма полезных дел. Мореходная, авиационная и геодезическая астрономии — все это пташки из ее гнезда.

Понятно, что все наблюдения в астрометрии должны как-то документироваться для точного измерения относительных расстояний и положений звезд. Возможным это стало с момента первого применения в астрономии фотографии. (Тут история опять промахнулась, и истинный автор фотографического метода не сохранился в ее анналах.) Фотография уже давно из скромного вспомогательного средства превратилась в самостоятельный подраздел — Фотографической астрометрии . С тех пор астрономы-наблюдатели почти забыли, как выглядит небо в окуляр телескопа, зато до тонкостей знают небесные фотопортреты. В ясные ночи на небольшие участки неба нацеливаются телескопы, предназначенные для фотографирования звезд. Называют их астрографами. Точный механизм осторожно поворачивает громадное устройство, компенсируя движение Земли. Представляете себе задачу: не смазать изображение светящейся точки, когда время выдержки измеряется не секундами, а часами. Потом астронегативы измеряются на специальных приборах.

Входит в астрометрию и Служба времени с задачей периодически вычислять точное время по наблюдениям звезд. Служба времени обязана хранить это точное время и распространять его среди всех научных и практических учреждений, которым оно необходимо.

И наконец, еще один подраздел — Служба широты . Обязана она своим существованием тому обстоятельству, что наша планета постоянно ерзает, вращаясь вокруг оси. Из-за этого «ёрзанья» Северный полюс планеты то и дело сползает с одной точки на другую, и путешествует по довольно сложному пути. А это значит, что вместе с полюсом смещается и градусная сетка, опутавшая Землю, — весьма серьезное препятствие для точных работ в геодезии.

* * *

Следующей большой отраслью современной астрономии является Небесная механика . Из самого названия ясно, что изучать она должна законы движения небесных тел под действием сил взаимного притяжения. Здесь два алтаря, два бога: Кеплер и Ньютон. Небесная механика интересуется фигурами небесных тел и их вращением. Правда, за последнее время ее мирный характер несколько подыспортился. Потому что расчеты орбит и траекторий любых ракет и ракетных снарядов немыслимы без законов небесной механики.

А теперь центральный раздел современной астрономии — Астрофизика . Ее задачи звучат совершенно неожиданно: изучение физических характеристик и химического состава небесных тел и межзвездной материи! Для такого рода анализов и экспериментов неплохо бы иметь объект в руках. Вроде бы для опыта необходим эффект присутствия. Впрочем, познакомимся поближе с самим разделом науки. Прежде всего астрофизика тоже делится на несколько подотделов.

Первый из них — Практическая астрофизика . Чтобы понять сложные процессы, которые происходят в звездах, надо накопить о них сведения — составить досье. Но много ли узнаешь, даже если очень прилежно день за днем — вернее, ночь за ночью — станешь просто смотреть на светящуюся точку? Вот и приходится придумывать тысячи хитроумных способов, заставляющих недоступно далекое светило рассказывать о себе. Как? Сначала языком света. Люди не просто фотографируют звезды. По фотографиям изучают спектральный состав излучений, измеряют блеск. В связи с этим появились и три конкурирующих раздела практической астрофизики: Астрофотография, Астроспектроскопия и Астрофотометрия . Каждая из них в наши дни — целая наука со своими законами, инструментами и специалистами.

Астрофотография дала возможность открыть множество новых небесных тел: и слабосветящихся звезд, и комет, и малых планет, которые вовсе не видны глазом. Ученые научились получать портреты звезд через светофильтры, а значит, и оценивать количественно их цвет. Наконец, наше родное светило Солнце вот уже более двадцати пяти лет выступает в роли кинозвезды, демонстрируя всем желающим захватывающую пляску своих протуберанцев. Заслуг астрофотографии не перечесть.

Во второй половине XIX века человечество получило в руки новый метод исследования — спектральный анализ. Родилась астроспектроскопия, давшая нам, пожалуй, наибольшую часть всех астрофизических сведений. Спектры недаром называют «паспортами звезд». В коротких цветных полосках зашифрованы и приметы и характеристики раскаленных топок вселенной.

Третий конкурент — астрофотометрия. Область невероятно тонких измерений, сложных и запутанных рассуждений о причинах того или иного вида свечения. Именно методы астрофотометрии позволяют разделить все звезды по их кажущемуся блеску на группы (сейчас эти группы называются звездными величинами) и навести хоть какой-то порядок в небесном хаосе, ввести первую классификацию.

Самым современным подразделом астрофизики считается ее теоретическая часть.

Теоретики изучают строение звезд, звездные атмосферы и даже физику процессов, происходящих в недрах раскаленных гигантов. Они исследуют самые главные, коренные процессы, лежащие в основе всего мироздания. И при этом — поди проверь их выводы. Поставь звезде градусник или расковыряй серединку. Черная зависть гложет астрофизиков-практиков, когда они уверяют, что теоретики чем-то смахивают на шарлатанов. Обвиненные в этом не обижаются. Успехов у них так много, что в астрофизике вырисовывается новый раздел, грозящий отколоться в самостоятельную отрасль науки. Этот раздел носит название Космической физики . Это уж совсем фантастическая наука. Ведь никакая физика невозможна без эксперимента. А тут… Лаборатория — вселенная, а объекты опытов — звезды. Как ни странно, но все именно так. И, как автор надеется показать дальше, самые фантастические гипотезы теоретиков находят свое подтверждение в работах космических физиков. Любопытно.

* * *

Радиоастрономия началась с шума. Конечно, с радиошума, который впоследствии перерос во всеобщий.

Примерно в 1928 году дирекция американской фирмы «Белл», обеспокоенная грозовыми помехами трансатлантической радиотелефонной связи, поручила молодому, только что окончившему университет инженеру Карлу Янскому исследовать эти помехи. Энергичный парень горячо принялся за дело. Прежде всего следовало поискать направление, где скрывался источник помех, досаждающий клиентам и снижающий дивиденды акционеров.

Громоздкая деревянная конструкция, вращающаяся на автомобильных колесах, — так выглядела первая направленная система Янского — энергично рыскала своими антеннами по небу. И хотя ее приходилось во время эксперимента толкать вручную, в конце 1932 года молодой инженер подал в совет директоров фирмы доклад не только с указанием источника, но и с первым объяснением механизма явления.

Открытие было оформлено вполне в американском духе. О нем писали газеты, подавая как сенсацию. Шумы и трески транслировались по радио. И люди слушали их так же серьезно, как слушают музыку.

Чем объяснить такое внимание к открытию в эпоху, когда любые научные интересы были весьма далеки от центра внимания мировой общественности? Прежде всего тем, что первый источник максимальных помех оказался расположенным… в направлении центра Галактики, второй же — прямо в противоположной области неба. Шипение и треск оказались космического происхождения. А внеземные новости всегда пользовались популярностью у широкой публики.

Но публика есть публика. В науке она погоды не делает. Поговорили, поахали — и забыли. Астрономы же вообще повели себя странно. Они даже говорить на эту тему не стали. Просто не обратили внимания на открытие американского инженера. Одни из них не были знакомы с радиотехникой и потому не доверяли ей; другие не удостоили новость вниманием по врожденной консервативности. Директора фирмы тоже успокоились. Раз помехи создаются космосом — людям делать нечего. Этого не поправишь.

Лишь один человек в мире увлекся свистами и шипением, доносившимися из просторов вселенной. Это Гроут Рибер — страстный радиолюбитель-коротковолновик. Через пять лет после опубликования результатов работ Янского Рибер по своим чертежам и на собственные средства построил антенну — 91/2-метровое параболическое зеркало из жести — и несколько высокочувствительных приемников.

Весной 1939 года Гроут Рибер приступил к наблюдениям космического радиоизлучения на волне 167 сантиметров возле собственного дома в Уитоне, штат Иллинойс. К 1944 году он составил первую в истории карту радионеба в области, занятой Млечным Путем. Так родилась радиоастрономия.

Во время второй мировой войны космическое радиоизлучение само взяло ученых за шиворот. По странам, охваченным борьбой с фашизмом, стали распространяться радарные установки как средство борьбы с авиацией противника. Повысилась чувствительность приемников. И тогда то из одного, то из другого округа ПВО стали поступать секретные сообщения о периодических сильных помехах, срывающих работу радаров. Сначала это приписывали действию таинственной «противолокации» врага. Но скоро выяснилось, что источником помех служит… Солнце, которое особенно мешало в периоды возникновения на нем пятен.

Обычно войны малоурожайны теоретическими открытиями. Это скорее время максимального напряжения практических способностей людей. Но бывает иногда и наоборот. В 1944 году в оккупированной Голландии немцы, естественно, отобрали у астрономов большую часть оборудования и тем самым обрекли их на сугубое теоретизирование. Как-то весной директор Лейденской обсерватории профессор Оорт предложил молодому астроному Ван де Хюлсту провести коллоквиум по недавно опубликованной статье Рибера.

Ван де Хюлст изучил структуру атомов водорода — распространенного элемента во вселенной — и сделал вывод, что при некоторых условиях эти атомы могут излучать радиоволны длиной 21 сантиметр.

Идею Ван де Хюлста спустя четыре года обосновал и развил теоретически советский радиоастроном И. С. Шкловский, а в 1951 году предсказанное радиоизлучение водорода было почти одновременно открыто в Америке, Голландии и Австралии. Радиоастрономия стала ведущим разделом современной науки.

* * *

До сих пор считается, что человек с нормальным зрением должен видеть невооруженным глазом на небе обоих полушарий до шести тысяч звезд. Но возьмите хотя бы театральный бинокль, и число светящихся точек резко увеличится. При этом в космосе мало звезд-одиночек. Большинство, как правило, входит в системы, подчиняющиеся общим законам. Сравнивая особенности отдельных звезд и систем друг с другом, астрономы выводят эти общие законы. А предмет, объединяющий клан серьезных людей, занятых обобщениями, называется Звездной астрономией . Она стоит отдельно, предваряя вход в отделы Космогонии и Космологии .

* * *

Вы наверняка слышали выражения «старая звезда», «молодая звезда». У звезд есть возраст — значит, они не вечны. Звезды рождаются, проходят длинный путь и умирают, израсходовав энергию. Проблемы происхождения и развития небесных тел как раз и изучает космогония. Несоразмерности жизни человека и звезды космогонисты ловко обходят при помощи сложных математических доказательств. И конечно, совсем не их вина, что именно в этой отрасли древней науки скопился наиболее обширный архив всевозможных спекуляций: от библии и до гипотезы Хойла — Фаулера.

* * *

Еще более умозрительной является космология — наука о вселенной как о едином связанном целом. Ее как-то даже неудобно называть разделом астрономии, настолько она величественна. «Ветер вечности» дует на ее бесконечных просторах, и мы еще не раз встретимся с ним лицом к лицу в последующих главах.