4. Веселое загробное существование

Если вы сбросили со счетов остатки сгоревших звезд, то напрасно. По целому ряду наиновейших теоретических соображений посмертное существование звезды — роман не менее интересный, чем ее жизнь.

В 1937 году в XVII томе журнала «Доклады Академии наук СССР» появилась на редкость короткая статья, подписанная известным советским физиком-теоретиком Л. Ландау. Называлась она просто: «Об источниках звездной энергии». Помните самый гвоздевой вопрос, над которым бились физики всего мира?

Статья занимала всего две странички. Порывистый и угловатый, насмешливый и всегда чуточку трагический Ландау терпеть не мог длинных писаний. Не будь у него под руками Евгения Лившица (так уверяют знавшие Ландау лично), он, Лев Давидович, не написал бы, может быть, вообще ни строчки. Гениальные идеи рождались и проходили цикл развития в его мозгу, не нуждаясь в фиксировании. Ландау даже имя свое стремился сократить и с большим удовольствием откликался, когда друзья звали его просто Дау.

В статье, с которой мы начали разговор, ее автор выдвинул любопытную гипотезу о возможности существования вещества в новом сверх-сверхплотном нейтронном состоянии. Встречаться оно могло… в недрах выгоревших звезд!

С тех пор прошло больше тридцати лет. Астрономы так и не отыскали в небе ни одной нейтронной звезды, но гипотеза Ландау продолжает существовать и даже развиваться. Вместо того чтобы искать новую, теоретики предпочитают придумывать причины, по которым наблюдение нейтронной звезды «крайне затруднительно для современного уровня техники».

Мы уже говорили раньше о плотности белых карликов. Пугали робкого читателя чудовищным весом наперстка, наполненного звездным карликовым веществом, и на этом остановились. Теперь на помощь следует призвать остатки мужества.

Что, если, сбросив газовую оболочку, то есть «приказав долго жить», звездный труп будет продолжать съеживаться? Картина хоть и лишена приятности, зато вполне реальная. Очевидно, при этом будет продолжать подниматься температура, и сердце белого карлика, уплотняясь и уплотняясь, начнет переходить в нейтронное состояние.

Нейтрон, вообще говоря, частица довольно неустойчивая. Среднее время его жизни не превышает 15 минут. Но в недрах звезды условия несколько отличаются от лабораторных. И там из неустойчивых частиц вполне может сформироваться достаточно устойчивое вещество, находящееся в пресловутом пятом — нейтронном — состоянии. Его плотность можно выразить цифрой граммов в кубическом сантиметре с 14 нулями. То есть наш наперсток, которым мы с вами черпаем сенсации из океана науки, наполненный нейтронным веществом, потянет на весах… 100 миллионов тонн! Совершенно несуразное число. Но не забывайте, что из реального мира Земли мы перешли в предположительный мир угасших звезд. Причем и угасших-то условно, по расчетам физиков.

Перед началом второй мировой войны вопросы звездных судеб изучал и американский физик-теоретик — истинный «отец» «Малыша», первой американской бомбы, — Роберт Оппенгеймер. Он выяснил, что если звезда, более тяжелая, чем Солнце, исчерпает запасы водорода и начнет сжиматься, то заканчивается этот этап катастрофой. За считанные мгновения внешние слои ядра звезды проваливаются до самого центра, осуществляя переход вещества в нейтронное состояние. Гравитационное поле такого плотного сгустка материи оказывается настолько сильным, что свет уже не может выбраться из него. И для стороннего наблюдателя такая звезда гаснет.

Этот процесс назвали гравитационным коллапсом , или гравитационной смертью, звезды. Однако, несмотря на резкое уменьшение объема, общая масса и сила тяготения, с которой звезда раньше действовала на окружающие ее небесные тела, остаются без изменения. И это, по мнению академика Я. Б. Зельдовича, едва ли не единственная возможность для будущего обнаружения таких «погасших» звезд. Термин «погасание» — чисто внешний. Мы с вами никогда не увидим только что описанного катастрофического процесса. В момент катастрофы в действие вступают законы Эйнштейна. Невероятное тяготение (иначе — сильное искривление пространства) начинает влиять на ход времени. И нам в сверхтелескопы гравитационный коллапс будет казаться замедленной съемкой процесса спокойного угасания.

Такие «погасшие» звезды и дальше вовсе не будут представлять собой холодные могилы небесных тел. Нет! Они продолжают эволюционировать, продолжают сжиматься. В сверхплотных недрах этих, ставших уже совсем небольшими по размерам, комков звездной материи продолжают бушевать гигантские температуры. Съежившееся и усилившееся во много раз гравитационное поле так искривляет пространство, что уже не только свет, но даже нейтрино не могут больше вырваться за его пределы. Дальнейшее сдавливание вещества нейтронной звезды должно привести к новому переходу в гиперонное состояние, которое дает начало барионной звезде.

И наконец, в условиях плотности, для которой у автора уже не осталось определяющего термина, барионы распадаются на кварки . Гигантская звезда сжимается едва ли не в точку.

Но если мы прошли мимо гиперонов и барионов, предоставляя читателю самому разбираться в их природе, то о кварках стоит сказать несколько слов.

Прежде всего — это гипотетические фундаментальные частицы с дробным электрическим зарядом. Из них, по мнению ученых, могут быть построены вое основные элементарные частицы, так расплодившиеся в настоящее время. Гипотеза кварков чрезвычайно заманчива, но, увы, до сих пор ни одной из подобных частиц физики не выловили ни в космических лучах, ни на гигантских ускорителях. Они появляются упрямо «только на обрывках старых конвертов» да еще… в снах. Впрочем, как им и положено по природе. Недаром один из авторов этой гипотезы — американский физик Гелл-Ман (вторым автором был молодой швейцарец Цвейг) — назвал их кварками. Вы спросите, что это значит? Ничего! Это название чего-то неизвестного и неуловимого, что встречалось в галлюцинациях героя романа Дж. Джойса «Пробуждение Финнегена». Романы Джойса похожи на бред, и у нас их не печатают. Ученые же уверяют, что они здорово помогают развивать воображение, необходимое современным физикам. А больше их, как правило, никто и не читает.

Но почему же, появившись на бумаге, кварки не открываются людям в своем естественном виде? Теоретики считают, что причиной тому, во-первых, крайняя малочисленность кварков во вселенной, во-вторых, их большая масса, требующая огромной энергии, необходимой для их получения. Считается, что всей энергии существующих ускорителей не хватит, чтобы получить хоть дюжину кварков. Но, может быть, физики просто придумывают все эти причины, а никаких кварков в природе не существует? Может быть и так…

Пока кварки являются физикам только во сне. Но если их наяву не окажется, это будет страшное разочарование. Потому что уже сейчас ученые теоретически с их помощью объяснили целую кучу противоречивейших свойств, которыми обладают атомные частицы. А академики А. Сахаров и Я. Зельдович предсказали даже существование целого кваркового семейства.

Интересно отметить, что советский физик-теоретик Дмитрий Дмитриевич Иваненко считает, будто сверхплотная дозвездная материя, из которой, по мнению группы Амбарцумяна, образуются звезды (вторая дежурная гипотеза нашего времени), вполне может представлять собой не что иное, как некие кварковые образования. Не исключено также, что некогда вся материя нашей области вселенной также находилась в состоянии сверхплотного кваркового ядра, из которого сверхвзрыв породил всю доступную обозрению Метагалактику.

В общем кварки нужны позарез. Наверное, именно потому на борту «Протона-4» — крупнейшей советской автоматической научной космической станции — установлены для них ловушки. Не удается получить кварки на Земле, поищем в космосе. Может быть, помогут первичные космические лучи, не долетающие до земной поверхности?

Совместное сосуществование барионов и кварков в недрах бывшей звезды должно приводить к исключительно неустойчивому характеру последней. И процесс может бурно начаться в обратном направлении. Чтобы читатель до конца прочувствовал, чем этот «обратный процесс» чреват, приведем пример.

Один протон, согласно новой теории, состоит из трех кварков. Но масса трех кварков в 30 раз больше массы протона. Значит, при образовании протона из кварков 29 единиц массы оказываются «избыточными» и переходят в энергию по закону Эйнштейна. «Дефект массы» получается равным 97 процентам!!! Это примерно в 140 раз больше, чем при термоядерных реакциях. То есть превращение массы в энергию приближается к реакции почти полной аннигиляции — переходу вещества в излучение.

Вы сами видите, что переход кварков обратно в барионы даст столько энергии, что этот процесс даже не назовешь взрывом. Это сверхвзрыв!

Не так давно швейцарский астрофизик Цвикки высказался за то, что в недрах некоторых звезд могут существовать небольшие подвижные сгустки материи, находящейся, может быть, в нейтронном состоянии. Цвикки назвал их гоблинами , по имени духов из легенд, живущих в подземельях. Как только такой гоблин выберется на поверхность звезды, гравитационные тиски ослабевают, и дух распадается, выделяя большое количество энергии. Может быть, именно эти «духи подземелья» повинны во вспышках новых и сверхновых?..

Ну, а ежели нейтронный дух дает вспышку сверхновой, то что может дать дух кварковый?..