§ 12. Эволюция звезд

Как уже подчеркивалось в § 6, подавляющее большинство звезд меняет свои основные характеристики (светимость, радиус) очень медленно. В каждый данный момент их можно рассматривать как находящиеся в состоянии равновесия — обстоятельство, которым мы широко пользовались для выяснения природы звездных недр. Но медленность изменений — это еще не означает отсутствие их. Все дело в сроках эволюции, которая для звезд должна быть совершенно неизбежной. В самом общем виде задача об эволюции какой-нибудь звезды может быть поставлена следующим образом. Допустим, что имеется звезда с данной массой и радиусом. Кроме того, известен ее первоначальный химический состав, который будем считать постоянным по всему объему звезды. Тогда ее светимость следует из расчета модели звезды. В процессе эволюции химический состав звезды неизбежно должен меняться, так как из-за поддерживающих ее светимость термоядерных реакций содержание водорода необратимо уменьшается со временем. Кроме того, химический состав звезды перестанет быть однородным. Если в ее центральной части процентное содержание водорода заметно уменьшится, то на периферии оно останется практически неизменным. Но это означает, что по мере эволюции звезды, связанной с «выгоранием» ее ядерного горючего, должна меняться сама модель звезды, а следовательно, ее структура. Следует ожидать изменения светимости, радиуса, поверхностной температуры. Как следствие таких серьезных изменений, звезда постепенно будет менять свое место на диаграмме Герцшпрунга — Рессела. Следует себе представить, что она на данной диаграмме опишет некую траекторию или, как принято говорить, «трек».

Проблема эволюции звезд, несомненно, принадлежит к числу фундаментальнейших проблем астрономии. По существу, вопрос заключается в том, как рождаются, живут, «стареют» и умирают звезды. Именно этой проблеме посвящена настоящая книга. Эта проблема по самой своей сущности является комплексной. Она решается целеустремленными исследованиями представителей разных отраслей астрономии — наблюдателей и теоретиков. Ведь изучая звезды, никак нельзя сразу сказать, какие из них находятся в генетическом родстве. Вообще эта проблема оказалась очень трудной и несколько десятилетий совершенно не поддавалась решению. Более того, вплоть до сравнительно недавнего времени усилия исследователей зачастую шли в совершенно ложном направлении. Так, например, само наличие главной последовательности на диаграмме Герцшпрунга — Рессела «вдохновило» многих наивных исследователей на представление, что звезды эволюционируют вдоль этой диаграммы от горячих голубых гигантов до красных карликов. Но так как существует соотношение «масса — светимость», согласно которому масса звезд, расположенных вдоль главной последовательности, должна непрерывно убывать, упомянутые исследователи упорно считали, что эволюция звезд в указанном направлении должна сопровождаться непрерывной и притом весьма значительной потерей их массы.

Все это оказалось неверным. Постепенно вопрос о путях эволюции звезд прояснился, хотя отдельные детали проблемы все еще далеки от решения. Особая заслуга в понимании процесса эволюции звезд принадлежит астрофизикам-теоретикам, специалистам по внутреннему строению звезд и прежде всего американскому ученому М. Шварцшильду и его школе.

Ранний этап эволюции звезд, связанный с процессом их конденсации из межзвездной среды, был рассмотрен в конце первой части этой книги. Там, собственно говоря, речь шла даже не о звездах, а о протозвездах. Последние, непрерывно сжимаясь под действием силы тяжести, становятся все более компактными объектами. Температура их недр при этом непрерывно растет (см. формулу (6.2)), пока не станет порядка нескольких миллионов кельвинов. При такой температуре в центральных областях протозвезд «включаются» первые термоядерные реакции на легких ядрах (дейтерий, литий, бериллий, бор), у которых «кулоновский барьер» сравнительно низок. Когда пойдут эти реакции, сжатие протозвезды замедлится. Однако довольно быстро легкие ядра «выгорят», так как их обилие невелико, и сжатие протозвезды будет продолжаться почти с прежней скоростью (см. уравнение (3.6) в первой части книги), протозвезда «стабилизуется», т. е. перестанет сжиматься, только после того как температура в ее центральной части поднимется настолько, что «включатся» протон-протонная или углеродно-азотная реакции. Она примет равновесную конфигурацию под действием сил собственной гравитации и перепада газового давления, которые практически точно скомпенсируют друг друга (см. § 6). Собственно говоря, с этого момента протозвезда и становится звездой. Молодая звезда «садится» на свое место где-то на главной последовательности. Точное ее место на главной последовательности определяется значением первоначальной массы протозвезды. Массивные протозвезды «садятся» на верхнюю часть этой последовательности, протозвезды со сравнительно небольшой массой (меньше солнечной) «садятся» на ее нижнюю часть. Таким образом, протозвезды непрерывно «входят» в главную последовательность на всем ее протяжении, так сказать, «широким фронтом».

«Протозвездная» стадия эволюции звезд довольно быстротечна. Самые массивные звезды проходят эту стадию всего лишь за несколько сотен тысяч лет. Неудивительно поэтому, что число таких звезд в Галактике невелико. Поэтому не так-то просто их наблюдать, особенно если учесть, что места, где происходит процесс звездообразования, как правило, погружены в поглощающие свет пылевые облака. Зато после того как они «пропишутся на своей постоянной площади» на главной последовательности диаграммы Герц- шпрунга — Рессела, ситуация резко изменится. В течение весьма длительного времени они будут находиться на этой части диаграммы, почти не меняя своих свойств. Поэтому основная часть звезд наблюдается на указанной последовательности.

Структура моделей звезды, когда она еще сравнительно недавно «села» на главную последовательность, определяется моделью, вычисленной в предположении, что ее химический состав одинаков во всем объеме («однородная модель»; см. рис. 11.1, 11.2). По мере «выгорания» водорода состояние звезды будет очень медленно, но неуклонно меняться, вследствие чего изображающая звезду точка будет описывать некоторый «трек» на диаграмме Герцшпрунга — Рессела. Характер изменения состояния звезды существенным образом зависит от того, перемешивается ли вещество в ее недрах или нет. Во втором случае, как мы видели для некоторых моделей в предыдущем параграфе, в центральной области звезды обилие водорода становится из-за ядерных реакций заметно меньшим, чем на периферии. Такая звезда может описываться только неоднородной моделью. Но возможен и другой путь звездной эволюции: перемешивание происходит во всем объеме звезды, которая по этой причине всегда сохраняет «однородный» химический состав, хотя содержание водорода со временем будет непрерывно уменьшаться. Заранее сказать, какая из этих возможностей реализуется в природе, было невозможно. Конечно, в конвективных зонах звезд всегда идет интенсивный процесс перемешивания вещества и в пределах этих зон химический состав должен быть постоянен. Но и для тех областей звезд, где доминирует перенос энергии путем лучеиспускания, перемешивание вещества также вполне возможно. Ведь никогда нельзя исключить систематических довольно медленных движений больших масс вещества с небольшими скоростями, которые приведут к перемешиванию. Такие движения могут возникнуть из-за некоторых особенностей вращения звезды.

Вычисленные модели какой-нибудь звезды, у которой при постоянной массе систематически меняется как химический состав, так и мера неоднородности, образуют так называемую «эволюционную последовательность». Нанося на диаграмму Герцшпрунга — Рессела точки, соответствующие разным моделям эволюционной последовательности звезды, можно получить ее теоретический трек на этой диаграмме. Оказывается, что если бы эволюция звезды сопровождалась полным перемешиванием ее вещества, треки были бы направлены от главной последовательности влево. Наоборот, теоретические эволюционные треки для неоднородных моделей (т. е. при отсутствии полного перемешивания) всегда уводят звезду направо от главной последовательности. Какой же из двух теоретически вычисленных путей звездной эволюции правильный? Как известно, критерий истины есть практика. В астрономии практика,— это результаты наблюдений. Посмотрим на диаграмму Герцшпрунга — Рессела для звездных скоплений, изображенную на рис. 1.6, 1.7 и 1.8. Мы там не найдем звезд, расположенных вверху и слева от главной последовательности. Зато имеется очень много звезд справа от нее — это красные гиганты и субгиганты. Следовательно, такие звезды мы можем рассматривать как покидающие главную последовательность в процессе своей эволюции, не сопровождающейся полным перемешиванием вещества в их недрах. Объяснение природы красных гигантов — одно из крупнейших достижений теории эволюции звезд1. Сам по себе факт существования красных гигантов означает, что эволюция звезд, как правило, не сопровождается перемешиванием вещества во всем их объеме. Расчеты показывают, что по мере эволюции звезды размеры и масса

2 ее конвективного ядра непрерывно уменьшаются .

Очевидно, что сама по себе эволюционная последовательность моделей звезды еще ничего не говорит о темпах звездной эволюции. Временная шкала эволюции может быть получена из анализа изменения химического состава у разных членов эволюционной последовательности моделей звезды. Можно определить некоторое среднее содержание водорода в звезде, «взвешенное» по ее объему. Обозначим это среднее содержание через X. Тогда, очевидно, изменение со временем величины X определяет светимость звезды, так как она пропорциональна количеству термоядерной энергии, выделившейся в звезде за одну секунду. Поэтому можно написать: где а — количество энергии, выделяющейся при ядерном превращении одного грамма вещества, символ означает изменение величины X за одну секунду. Мы можем определить возраст звезды как промежуток времени, прошедший с того момента, когда она «села» на главную последовательность, т. е. в ее недрах начались ядерные водородные реакции. Если для разных членов эволюционной последовательности известны величина светимости и среднее содержание водорода X, то не представляет труда из уравнения

(12.1) найти возраст какой-нибудь определенной модели звезды на ее эволюционной последовательности. Тот, кто знает основы высшей математики, поймет, что из уравнения

(12.1) , являющегося простым дифференциальным уравнением, возраст звезды т определяется как интеграл

где Х0 — начальное обилие водорода в звезде, когда она только «села» на главную последовательность. Для незнакомых с высшей математикой читателей можно написать упрощенное выражение для промежутка времени, прошедшего между двумя состояниями . звезды с разными, хотя и мало отличающимися значениями X:

Суммируя промежутки времени т12, мы, очевидно, получим интервал времени т, прошедший от начала эволюции звезды. Именно это обстоятельство и выражает формула (12.2).

На рис. 12.1 приведены теоретически рассчитанные эволюционные треки для сравнительно массивных звезд. Начинают они свою эволюцию на нижней кромке главной последовательности. По мере выгорания водорода такие звезды перемещаются по своим трекам в общем направлении поперек главной последовательности, не выходя за ее пределы (т. е. оставаясь в пределах ее ширины). Этот этап эволюции, связанный с пребыванием звезд на главной последовательности, является самым длительным. Когда содержание водорода в ядре такой звезды станет близким к 1%, темпы эволюции ускорятся. Для поддержания энерговыделения на необходимом уровне при резко уменьшившемся содержании водородного «топлива» необходимо в качестве «компенсации» увеличение температуры ядра. И здесь, как и во многих других случаях, звезда сама регулирует свою структуру (см. § 6). Увеличение температуры ядра достигается путем сжатия звезды как целого. По этой причине эволюционные треки круто поворачивают налево, т. е. температура поверхности звезды возрастает. Очень скоро, однако, сжатие звезды прекращается, так как весь водород в ядре выгорает. Зато «включается» новая область ядерных реакций — тонкая оболочка вокруг уже «мертвого» (хотя и очень горячего) ядра. По мере дальнейшей эволюции звезды эта оболочка все дальше и дальше отходит от центра звезды, тем самым увеличивая массу «выгоревшего» гелиевого ядра. Одновременно будет происходить процесс сжатия этого ядра и его разогрев. Однако при этом наружные слои такой звезды начинают быстро и очень сильно «разбухать». Это означает, что при мало изменяющемся потоке поверхностная температура значительно уменьшается. Ее эволюционный трек круто поворачивает направо и звезда приобретает все признаки красного сверхгиганта. Так как к такому состоянию звезда после прекращения сжатия приближается довольно быстро, почти нет звезд, заполняющих на диаграмме Герцшпрунга — Рессела разрыв между главной последовательностью и ветвью гигантов и сверхгигантов. Это хорошо видно на таких диаграммах, построенных для открытых скоплений (см. рис. 1.8). Дальнейшая судьба красных сверхгигантов еще недостаточно хорошо изучена. К этому важному вопросу мы вернемся в следующем параграфе. Разогрев ядра может происходить вплоть доочень высоких температур, порядка сотни миллионов кельвинов. При таких температурах «включается» тройная гелиевая реакция (см. § 8). Выделяющаяся при этой реакции энергия останавливает дальнейшее сжатие ядра. После этого ядро слегка расширится, а радиус звезды уменьшится. Звезда станет горячее и сдвинется влево на диаграмме Герц- шпрунга — Рессела.

Несколько иначе протекает эволюция у звезд с меньшей массой, например, М ~ 1,1 1,5Мф. Заметим, что эволюцию звезд, масса которых меньше массы Солнца, вообще нецелесообразно рассматривать, так как время пребывания их в пределах главной последовательности превышает возраст Галактики. Это обстоятельство делает проблему эволюции звезд с малой массой «неинтересной» или, лучше сказать, «не актуальной». Заметим только, что звезды с малой массой (меньше чем ~ 0,3 солнечной) остаются полностью «конвективными» даже тогда, когда они находятся на главной последовательности. «Лучистое» ядро у них так никогда и не образуется. Эта тенденция хорошо видна в случае эволюции протозвезд (см. § 5). Если масса последних сравнительно велика, лучистое ядро образуется еще до того, как протозвезда «сядет» на главную последовательность. А маломассивные объекты как на протозвездной, так и на звездной стадии остаются полностью конвективными. У таких звезд температура в центре недостаточно велика для того, чтобы протон-протонный цикл полностью работал. Он обрывается на образовании изотопа 3Не, а «нормальный» 4Не уже не синтезируется. За 10 миллиардов лет (что близко к возрасту старейших звезд этого типа) в 3Не превратится около 1% водорода. Следовательно, можно ожидать, что обилие 3Не по отношению к 1Н будет аномально велико — около 3%. К сожалению, пока нет возможности проверить это предсказание теории наблюдениями. Звезды с такой малой массой — это красные карлики, температура поверхности которых совершенно недостаточна для возбуждения линий гелия в оптической области. В принципе, однако, в далекой ультрафиолетовой части спектра резонансные линии поглощения могли бы наблюдаться методами ракетной астрономии. Однако чрезвычайная слабость непрерывного спектра исключает даже эту проблематичную возможность. Следует, однако, заметить, что существенная, если не большая часть красных карликов представляет собой вспыхивающие звезды типа ЦУ Кита (см. § 1). Сам феномен быстро повторяющихся вспышек у таких карликовых холодных звезд несомненно связан с конвекцией, которой охвачен весь их объем. Во время вспышек наблюдаются линии излучения. Может быть, удастся наблюдать и линии 3Не у таких звезд? Если масса протозвезды меньше чем 0,08М , то температура в ее недрах настолько мала, что никакие термоядерные реакции уже не могут остановить сжатие на стадии главной последовательности. Такие звезды будут непрерывно сжиматься, пока не станут белыми карликами (точнее, вырожденными красными карликами). Вернемся, однако, к эволюции более массивных звезд.

На рис. 12.2 приведен эволюционный трек звезды с массой, равной 5М согласно наиболее детальным расчетам, выполненным с помощью ЭВМ. На этом треке цифрами отмечены характерные этапы эволюции звезды. В пояснениях к рисунку указаны сроки прохождения каждого этапа эволюции. Укажем здесь только, что участку эволюционного трека 1—2 соответствует главная последовательность, участку 6—7 — стадия красного гиганта. Интересно уменьшение светимости на участке 5—6, связанное с затратой энергии на «разбухание» звезды. На рис. 12.3 аналогичные теоретически рассчитанные треки приведены для звезд разной массы. Цифры, отмечающие различные фазы эволюции, имеют тот же смысл, что и на рис. 12.2.

Из простого рассмотрения эволюционных треков, изображенных на рис. 12.3, следует, что более или менее массивные звезды довольно «извилистым» путем уходят с главной последовательности, образуя ветвь гигантов на диаграмме Герцшпрунга — Рессела. Характерен очень быстрый рост светимости звезд с меньшей массой по мере их эволюции в направлении красных гигантов. Разница в эволюции таких звезд по сравнению с более массивными состоит в том, что у первых образуется очень плотное, вырожденное ядро. Та-Рис. 12.2. Эволюционный трек звезды с массой 5М-., (1—2) — горение водорода в конвективном ядре, 6,44 107 лет; (2—3) — общее сжатие звезды, 2,2 106 лет; (3—4) — возгорание водорода в слоистом источнике, 1,4 105 лет; (4—5) — горение водорода в толстом слое,1,2 106 лет; (5—6) — расширение конвективной оболочки, 8 105 лет; (6—7) — фаза красного гиганта, 5 105 лет; (7—8) — возгорание гелия в ядре, 6 106 лет; (8—9) — исчезновение конвективной оболочки, 106 лет; (9—10) — горение гелия в ядре, 9 106 лет; (10—11) — вторичное расширение конвективной оболочки, 106 лет; (11—12) — сжатие ядра по мере выгорания гелия; (12—13—14) — слоистый гелиевый источник; (14—?) — нейтринные потери, красный сверхгигант.

кое ядро, из-за большого давления вырожденного газа (см. § 10), способно «удерживать» вес лежащих выше слоев звезды. Оно почти не будет сжиматься, а следовательно, сильно нагреваться. Поэтому «тройная» гелиевая реакция если и включится, то гораздо позже. За исключением физических условий, в области около центра структура таких звезд будет похожа на структуру более массивных. Следовательно, их эволюция после выгорания водорода в центральной области также будет сопровождаться «разбуханием» наружной оболочки, что приведет их треки в область красных гигантов. Однако в отличие от более массивных сверхгигантов, их ядра будут состоять из весьма плотного вырожденного газа (см. схему на рис. 11.4).

Пожалуй, наиболее выдающимся достижением развитой в этом параграфе теории звездной эволюции является объяснение ею всех особенностей диаграммы Герцшпрунга — Рессела для скоплений звезд. Описание этих диаграмм было уже дано в § 1. Как уже говорилось в указанном параграфе, возраст всех звезд в данном скоплении следует считать одинаковым. Так же одинаковым должен быть первоначальный химический состав этих звезд. Ведь все они образовались из одного и того же (правда, достаточно крупного) агрегата межзвездной среды — газово-пылевого комплекса. Различные звездные скопления должны отличаться друг от друга прежде всего возрастом и, кроме того, первоначальный химический состав шаровых скоплений должен резко отличаться от состава рассеянных скоплений.

Линии, вдоль которых на диаграмме Герцшпрунга — Рессела располагаются звезды скоплений, никоим образом не означают их эволюционные треки. Эти линии суть геометрическое место точек на указанной диаграмме, где звезды с различными массами имеютодинаковый возраст. Если мы хотим сравнить теорию звездной эволюции с результатами наблюдений, прежде всего следует построить теоретически «линии одинакового возраста» для звезд с различными массами и одинаковым химическим составом. Возраст звезды на различных этапах ее эволюции можно определить, воспользовавшись формулой (12.3). При этом необходимо пользоваться теоретическими треками звездной эволюции типа тех, которые изображены на рис. 12.3. На рис. 12.4 приведены результаты вычислений для восьми звезд, массы которых меняются в пределах от 5,6 до 2,5 солнечной массы. На эволюционных треках каждой из этих звезд отмечены точками положения, которые соответствующие звезды займут через сто, двести, четыреста и восемьсот миллионов лет своей эволюции от первоначального состояния на нижней кромке главной последовательности. Кривые, проходящие через соответствующие точки для различных звезд, и есть «кривые одинакового возраста». В нашем случае расчеты велись для достаточно массивных звезд. Рассчитанные промежутки времени их эволюции охватывают по крайней мере 75% срока их «активной жизни», когда они излучают вырабатываемую в их недрах термоядерную энергию. Для самых массивных звезд эволюция доходит до стадии вторичного сжатия, наступающего после полного выгорания водорода в их центральных частях.

Если сравнить полученную теоретическую кривую равного возраста с диаграммой Герцшпрунга — Рессела для молодых звездных скоплений (см. рис. 12.5, а также 1.6), то невольно бросается в глаза ее поразительное сходство с основной линией этого скопления. В полном соответствии с главным положением теории эволюции, согласно которому более массивные звезды быстрее уходят с главной последовательности, диаграмма на рис. 12.5ясно указывает, что верхняя часть этой последовательности звезд в скоплении загибается вправо. Место главной последовательности, где звезды начинают заметно от нее отклоняться, находится тем «ниже», чем больше возраст скопления. Уже одно это обстоятельство позволяет непосредственно сравнивать возраст различных звездных скоплений. У старых скоплений главная последовательность обрывается сверху где-то около спектрального класса А. У молодых скоплений пока еще «цела» вся главная последовательность, вплоть до горячих массивных звезд спектрального класса В. Например, такая ситуация видна на диаграмме для скопления NСС 2264 (рис. 1.6). И действительно, вы-

численная для этого скопления линия одинакового возраста Дает срок его эволюции всего лишь в 10 миллионов лет. Таким образом, это скопление родилось «на памяти» древних предков человека — рамапитеков… Значительно более старое скопление звезд — Плеяды, диаграмма которого изображена на рис. 1.4, имеет вполне «средний» возраст около 100 миллионов лет. Там еще сохранились звезды спектрального класса В7. А вот скопление в Гиадах (см. рис. 1.5) довольно старенькое — его возраст около одного миллиарда лет, и поэтому главная последовательность начинается только со звезд класса А.

Теория эволюции звезд объясняет еще одну любопытную особенность диаграммы Герц- шпрунга — Рессела для «молодых» скоплений. Дело в том, что сроки эволюции для маломассивных карликовых звезд очень велики. Например, многие из них за 10 миллионов лет (срок эволюции скопления NСС 2264) еще не прошли стадию гравитационного сжатия и, строго говоря, являются даже не звездами, а протозвездами. Такие объекты, как мы знаем, располагаются справа от диаграммы Герцшпрунга — Рессела (см. рис. 5.2, где эволюционные треки звезд начинаются на ранней стадии гравитационного сжатия). Если поэтому у молодого скопления карликовые звезды еще «не сели» на главную последовательность, нижняя часть последней будет у такого скопления смещена вправо, что и наблюдается (см. рис. 1.6). Наше Солнце, как мы уже говорили выше, несмотря на то, что оно уже «исчерпало» заметную часть своих «водородных ресурсов», еще не вышло из полосы главной последовательности диаграммы Герцшпрунга — Рессела, хотя оно и эволюционирует около 5 миллиардов лет. Расчеты показывают, что «молодое», недавно «севшее» на главную последовательность Солнце излучало на 40% меньше, чем сейчас, причем его радиус был всего лишь на 4% меньше современного, а температура поверхности равнялась 5200 К (сейчас 5700 К).

Теория эволюции непринужденно объясняет особенности диаграммы Герцшпрунга — Рессела для шаровых скоплений. Прежде всего это очень старые объекты. Их возраст лишь ненамного меньше возраста Галактики. Это ясно следует из почти полного отсутствия на этих диаграммах звезд верхней части главной последовательности. Нижняя часть главной последовательности, как уже говорилось в § 1, состоит из субкарликов. Из спектроскопических наблюдений известно, что субкарлики очень бедны тяжелыми элементами — их там может быть в десятки раз меньше, чем у «обычных» карликов. Поэтому первоначальный химический состав шаровых скоплений существенно отличался от состава вещества, из которого образовались рассеянные скопления: там было слишком мало

тяжелых элементов. На рис. 12.6 представлены теоретические эволюционные треки звезд с массой 1,2 солнечной (это близко к массе звезды, которая успела проэволюционировать за 6 миллиардов лет), но с разным первоначальным химическим составом. Отчетливо видно, что после того как звезда «сошла» с главной последовательности, светимость для одинаковых фаз эволюции при малом содержании металлов будет значительно выше. Одновременно эффективные температуры поверхности у таких звезд будут выше.

На рис. 12.7 показаны эволюционные треки маломассивных звезд с малым содержанием тяжелых элементов. На этих кривых точками указаны положения звезд после шести миллиардов лет эволюции. Соединяющая эти точки более жирная линия, очевидно, есть линия одинакового возраста. Если сравнить эту линию с диаграммой Герцшпрунга — Рес- села для шарового скопления М 3 (см. рис. 1.8), то сразу же бросается в глаза полное совпадение этой линии с линией, по которой «уходят» с главной последовательности звезды этого скопления.

На приведенной на рис. 1.8 диаграмме видна также горизонтальная ветвь, отклоняющаяся от последовательности гигантов налево. По-видимому, она соответствует звездам, в недрах которых идет «тройная» гелиевая реакция (см. § 8). Таким образом, теория эволюции звезд объясняет все особенности диаграммы Герцшпрунга — Рессела для шаровых скоплений их «древним возрастам» и малым обилием тяжелых элементов1.

Очень любопытно, что у скопления в Гиадах наблюдается несколько белых карликов, а в Плеядах — нет. Оба скопления сравнительно близки к нам, поэтому различными «условиями видимости» это интересное различие между двумя скоплениями объяснить нельзя. Но мы уже знаем, что белые карлики образуются на заключительной стадии красных гигантов, массы которых сравнительно невелики. Поэтому для полной эволюции такого гиганта необходимо немалое время — по крайней мере миллиард лет. Это время «прошло» у скопления в Гиадах, но «еще не наступило» в Плеядах. Именно поэтому в первом скоплении есть уже некоторое количество белых карликов, а во втором — нет.

На рис.12.8 представлена сводная схематическая диаграмма Герцшпрунга — Рессе- ла для ряда скоплений, рассеянных и шаровых. На этой диаграмме эффект различия возрастов у разных скоплений виден вполне отчетливо. Таким образом, имеются все основания утверждать, что современная теория строения звезд и основанная на ней теория звездной эволюции смогли непринужденно объяснить основные результаты астрономических наблюдений. Несомненно, это является одним из наиболее выдающихся достижений астрономии XX столетия.