§ 2. Общие сведения о межзвёздной среде

Звезды, так же как Солнце, Луна и планеты, были известны человеку еще тогда, когда он человеком не был. Я полагаю, что самой примитивной астрономической информацией располагают и животные, причем не только высшие. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды — это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Этого не понимали даже такие выдающиеся мыслители, как Кеплер. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Впрочем, этот вопрос для астрономов XVIII и XIX вв. никогда не представлялся актуальным — круг интересов ученых был тогда совсем не таким, как в наши дни. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX в. немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Гартман исследовал спектры двойных звезд, у которых по причине орбитального движения длины волн спектральных линий строго периодически меняются на небольшую величину то в одну, то в другую сторону. Период таких изменений в точности равен периоду орбитального движения одной звезды вокруг другой. Причиной таких периодических изменений длин волн спектральных линий является хорошо известный из лабораторной физики эффект Доплера. Когда источник излучения движется на наблюдателя со скоростью V, длина волны линии 1 уменьшается на величину 11, где с — скорость света, если же источник удаляется от наблюдателя с той же скоростью, длина волны увеличивается на ту же величину. Представляется очевидным, что звезда, совершающая периодическое движение по своей орбите, будет то приближаться к нам, то удаляться, что и объясняет периодические смещения длин волн линий ее спектра. Открытие немецкого ученого состояло в том, что он обнаружил в спектрах некоторых двойных звезд две линии поглощения, длины волн которых не менялись, в то время как у всех остальных спектральных линий по описанной выше причине длины волн периодически менялись. Эти «неподвижные» линии, принадлежащие ионизованному кальцию, получили название «стационарных». Они образуются не в наружных слоях звезд, а где-то «по пути» между звездой и наблюдателем. Так впервые был обнаружен межзвездный газ, который в проходящем сквозь него звездном свете производит поглощение в узких спектральных участках.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, т. е. состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/с. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Тот факт, что впервые межзвездный газ был обнаружен по его поглощению в линиях кальция, конечно, не означает, что последний является там преобладающим по обилию элементом. Межзвездный газ проявляет себя и по другим линиям поглощения, например, по известной желтой линии натрия. Интенсивность линий поглощения далеко не всегда определяется обилием соответствующего химического элемента. В гораздо большей степени она определяется «удачным» расположением энергетических уровней соответствующего атома, переходы между которыми эту линию реализуют. Весьма важно то обстоятельство, что в межзвездном пространстве практически все атомы, ионы и молекулы должны находиться на самом «нижнем», т. е. «невозбужденном» энергетическом уровне. Дело в том, что процессы возбуждения атомов, связанные, как обычно, либо с поглощением излучения, либо со столкновениями между частицами, происходят в межзвездной среде неимоверно редко. Если после рекомбинации электрона с ионом образовавшийся нейтральный атом оказался возбужденным, то он всегда «успеет» спонтанно перейти в самое «глубокое» состояние, излучив один или несколько квантов — никакие процессы столкновения с другими частицами ему это сделать не помешают1.

Находясь неопределенно долго на «основном» уровне, атом может поглощать излучения на определенных частотах. Наинизшая частота называется «резонансной», а соответствующая спектральная линия — «резонансной» линией. Обычно резонансные линии бывают самыми интенсивными. Спектроскопической особенностью кальция (так же, как и натрия) является то, что его резонансные линии находятся в видимой части спектра. Между тем подавляющее большинство резонансных линий других элементов находится в далекой ультрафиолетовой области. Классическими примерами являются самые обильные элементы космоса — водород и гелий. У водорода длина волны резонансной линии (это знаменитая линия «лайман-альфа») равна 1216 А, а у гелия еще короче — 586 А. Между тем все внеземное излучение с длиной волны более короткой, чем 2900 А, полностью поглощается земной атмосферой. До развития внеатмосферной, ракетной и спутниковой астрономии ультрафиолетовая часть спектра всех космических объектов была совершенно недоступна астрономам. Только сравнительно недавно были получены звездные спектры в дальней ультрафиолетовой области и была зарегистрирована межзвездная линия лайман-альфа, так же как и резонансные линии кислорода (длина волны 1300 А) и других межзвездных атомов. Во избежание недоразумений заметим, что спектральные линии водорода, гелия, кислорода и других элементов издавна наблюдаются в спектрах Солнца и звезд. Однако в этом случае наблюдались не резонансные линии, а линии, возникающие при переходах между возбужденными уровнями. Но в горячих, плотных, наполненных излучением звездных атмосферах «населенности» возбужденных уровней могут быть вполне достаточны для образования линии поглощения, между тем как в межзвездной среде физические условия совершенно другие.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу атмосфер Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как «примеси». Любопытно, что в межзвездном газе кальций примерно в миллион раз менее обилен, чем водород.

Подлинная революция в исследовании межзвездной среды оптическими методами наступила в последние годы в связи с впечатляющими достижениями внеатмосферной астрономии. К настоящему времени (1983 год) наиболее полное исследование химического состава сравнительно близких к нам облаков межзвездного газа было выполнено на американском специализированном астрономическом спутнике, носящем название «Коперник»(см. «Введение»). Как уже говорилось выше, резонансные линии основных (по обилию) элементов находятся, как правило, в ультрафиолетовой части спектра. Наблюдая яркие, сравнительно близкие звезды, можно было в их ультрафиолетовых спектрах обнаружить межзвездные резонансные линии поглощения таких элементов как водород (линия «лайман-альфа» с длиной волны 1216 А), углерод, азот, кислород, магний, кремний, сера, аргон, марганец и др. Наблюдались как линии нейтральных межзвездных атомов, так и их ионов. При этом выявились совершенно реальные различия в химическом составе отдельных облаков и Солнца. Тем самым исследования межзвездной среды поднялись на более высокую ступень: если в первом приближении, основываясь только на весьма ограниченных наземных наблюдениях, можно было считать, что химический состав межзвездного газа более или менее сходен с химическим составом солнечной атмосферы, то теперь уже ясно видны вполне реальные различия состава даже между отдельными облаками. Например, обилие магния, марганца и хлора по отношению к водороду в облаках межзвездной среды в 4—10 раз меньше, чем в солнечной атмосфере. На рис. 2.1 представлены отклонения химического состава от «солнечного» для четырех различных облаков, проектирующихся на яркие звезды. Этот рисунок дает наглядное представление о различиях в химическом составе различных облаков и Солнца. Мы видим, в частности, что зачерненные прямоугольники располагаются, как правило, ниже горизонтальной прямой, что указывает на «недостачу» соответствующих элементов по сравнению с Солнцем.

Наряду с атомами и ионами в межзвездном газе имеются (чаще всего в ничтожном количестве,~ 10-7 от обилия атомов водорода) молекулы. Методами оптической астрономии были обнаружены в межзвездной среде простые двухатомные молекулы СН, СН+ (знак «+» означает ионизованную молекулу) и СК. Вместо привычных в лабораторной физике молекулярных спектров, состоящих из очень большого количества линий, сливающихся в полосы, спектры межзвездных молекул, как правило, состоят из одной линии, так как почти все они находятся на самом глубоком электронном, колебательном и вращательном уровне. Исключение составляют межзвездные молекулы СК, у которых почти сорок лет назад были обнаружены две линии. Это означает, что заметную населенность имеет и второй вращательный уровень, который у молекулы СК расположен значительно ближе к первому, чем у молекул СН и СН+. Казалось бы, стоит ли упоминать о такой мелочи? Но лет 15 назад было установлено, что эта «мелочь» имеет очень глубокую причи

ну: второй вращательный уровень молекулы СК возбуждается так называемым «реликтовым» излучением, заполняющим всю Вселенную. Это излучение, как выяснилось, имеет планковский спектр с температурой около 3° абсолютной шкалы Кельвина и представляет собой как бы «остаток» («реликт») древнего состояния Вселенной, когда ее возраст был в десятки тысяч раз меньше, чем теперь, а размеры в 1400 раз меньше! Открытие реликтового излучения — событие огромной важности в астрономии, равное по своему значению открытию красного смещения в спектрах галактик. Удивительно, что косвенным образом это излучение было обнаружено и, увы, не понято за 25 лет до своего открытия! Впрочем, это не является единственным случаем в истории науки. В этой книге мы столкнемся и с другими примерами.

Исключительно важное значение имеет обнаружение в межзвездном газе молекул водорода Н2. Так как резонансная электронная полоса этой молекулы расположена в ультрафиолетовой части спектра около 1092 А, только внеатмосферные астрономические иссле-дования могли решить эту задачу. И здесь пока наиболее ценные сведения были получены на том же спутнике «Коперник» о котором речь шла выше. Специально исследовались ультрафиолетовые спектры от сильно покрасневших звезд, находящихся, следовательно, за плотными газово-пылевыми облаками, особенно сильно поглощающими синюю часть спектра (см. ниже). Именно в таких облаках можно было ожидать измеримого количества молекулярного водорода. Спектрограммы показывают, что у таких звезд линии межзвездного молекулярного водорода очень сильны. Так как одновременно в спектрах тех же звезд измерялась резонансная линия атомного водорода лайман-альфа, оказалось возможным непосредственно измерить отношение обилий молекулярного и атомного водорода в облаках. Это отношение, как выяснилось, меняется в очень широких пределах, от нескольких десятых до значения, меньшего чем 10-7, определяемого чувствительностью спектрографа к очень слабым линиям.

До сих пор, говоря о межзвездной среде, мы имели в виду только межзвездный газ. Но в этой среде имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше. что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 г. с несомненностью было доказано, что межзвездное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико. Поэтому межзвездное поглощение сопровождается одновременным покраснением цвета удаленных объектов, находящихся в полосе Млечного Пути. Сама величина поглощения меняется в разных направлениях довольно беспорядочным образом. Есть целые участки неба, где поглощение невелико, есть и такие области в Млечном Пути, где поглощение света достигает огромных размеров. Такие области носят образное название «угольных мешков» (рис. 2.2). Все это означает, что поглощающая свет субстанция распределена в межзвездном пространстве крайне неоднородно, образуя отдельные конденсации или облака.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, т. е. твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав (графит, силикаты, «загрязненные» льдинки и пр.). Установлено, что пылинки имеют до-

вольно вытянутую форму и в какой-то степени «ориентируются», т. е. направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным, причем степень поляризации (которая коррелируется с покраснением цвета, обусловленным поглощением) достигает 1—2%. Причиной, вызывающей ориентацию пылинок, является наличие в межзвездном пространстве очень слабых магнитных полей. Для того чтобы объяснить наблюдаемую поляризацию света удаленных звезд, необходимо предположить, что величина этого поля порядка 10-510-6 эрстед. В дальнейшем мы еще не раз будем говорить о межзвездном магнитном поле. Здесь только заметим, что другие, более совершенные методы его измерения подтверждают приведенную выше оценку.

Исключительно важное значение имеет вопрос об ионизации межзвездного газа и связанный с этим вопрос о его температуре. Необходимо, однако, подчеркнуть, что понятие «температура» применительно к межзвездному газу отнюдь не является элементарным. Дело в том, что это понятие, строго говоря, применимо только к телам, находящимся в состоянии термодинамического равновесия. Последнее предполагает одновременное выполнение целого ряда условий. Например, спектральная плотность излучения должна описываться формулой Планка, полная плотность энергии — законом Стефана — Больцмана, согласно которому последняя пропорциональна четвертой степени температуры, распределение скоростей различных атомов, ионов, а также электронов — законом Максвелла, распределение атомов, молекул и ионов по различным квантовым состояниям — формулой Больцмана. Во все эти законы и формулы, как известно, входит важный параметр, имеющий смысл температуры. Например, в распределение скоростей Максвелла входит кинетическая температура, в формулу Больцмана — температура возбуждения и пр. Если тело (или система) находится в состоянии термодинамического равновесия, то все эти параметры — «температуры» должны быть равны друг другу и тогда они называются просто температурой тела.

Легко убедиться, что даже в привычных для нас естественных земных условиях термодинамическое равновесие, как правило, не реализуется. Например, когда мы говорим о температуре воздуха, всегда следует уточнение: «в тени». Очень наглядно можно убедиться в полном отсутствии термодинамического равновесия на следующем простом примере. Зададимся вопросом: какова температура нашей комнаты солнечным днем? Казалось бы, ответить просто: около 20 градусов шкалы Цельсия или 293 градуса шкалы Кельвина — кельвинов (К). Но с тем же основанием я могу утверждать, что температура комнаты… 5700 К. Почему? Да потому, что вся комната наполнена прямым и рассеянным солнечным светом, спектральный состав которого примерно такой же, как у солнечного излучения. Ну, а спектр Солнца очень близок к спектру абсолютно черного тела, нагретого до температуры 5700 К. В то же время следует иметь в виду, что плотность энергии солнечного излучения в комнате может быть в сотню тысяч раз меньше, чем на поверхности Солнца: ведь по мере удаления от Солнца поток его излучения изменяется обратно пропорционально квадрату расстояния. Какой же смысл имеет бытующее представление о том, что температура комнаты 20 градусов Цельсия? Неявно мы при этом говорим о кинетической температуре, т. е. параметре максвеллова распределения скоростей молекул воздуха, заключенных в нашей комнате. Между тем 5700 К есть цветовая температура излучения, заполняющая эту комнату. Таким образом, на этом простейшем примере видно, сколь велики отклонения от термодинамического равновесия даже в самых обычных условиях. Заметим, кстати, что сама жизнь как весьма сложный физико-химический процесс возможна только при отсутствии термодинамического равновесия. Строгое термодинамическое равновесие — это смерть. Можно ли говорить о температуре в межзвездном пространстве, где отклонения от термодинамического равновесия исключительно велики? Оказывается, что можно, если каждый раз оговаривать, о какой «температуре» идет

речь. Чаще всего приходится говорить о кинетической температуре межзвездной среды, которая может меняться в довольно широких пределах (см. ниже). С другой стороны, межзвездное пространство наполнено излучением от огромного количества звезд. Поэтому цветовая температура этого излучения такая же, как у звезд, т. е. измеряется тысячами и десятками тысяч кельвинов. Если мы рассматриваем, например, область межзвездного пространства на расстоянии нескольких десятков световых лет от горячей звезды — гиганта спектрального класса О—В (см. § 1), то цветовая температура там будет 20—40 тысяч кельвинов. Наоборот, на таком же расстоянии от красного сверхгиганта цветовая температура может быть около 3 тысяч кельвинов. В то же время плотность излучения в межзвездном пространстве исключительно мала. Она во столько же раз меньше плотности излучения на поверхности ближайшей звезды, во сколько раз телесный угол, под которым из какой-нибудь точки межзвездного пространства виден диск звезды, меньше, чем 2л1. Если подсчитать это отношение, то окажется, что оно около 10-15. В межзвездном пространстве средняя плотность лучистой энергии около 1 электронвольта на кубический сантиметр или 10-12 эрг/см3. Следовательно, так как энергия каждого из световых квантов около 3 электронвольт, на кубический сантиметр межзвездного пространства приходится меньше одного кванта. В то же время энергии этих квантов примерно такие же, как в звездных атмосферах, где плотность квантов неизмеримо больше. В этом смысле образно говорят, что поле излучения в межзвездном пространстве сильно «разжижено». Заметим, что и в нашей комнате, и вообще на Земле, излучение также «разжижено». Температура межзвездной среды, определяемая по плотности заполняющего ее излучения, исключительно низка — порядка нескольких кельвинов. Именно такую температуру должны иметь поверхности твердых пылинок, находящиеся в межзвездном пространстве в тепловом равновесии с окружающим их полем «разжиженного» излучения: ведь такие пылинки должны поглощать ровно столько же, сколько они излучают.

Крайнее несоответствие между высокой цветовой температурой излучения, заполняющего межзвездную среду, и его очень низкой плотностью является едва ли не основным фактором, определяющим своеобразие физических условий в этой среде. Рассмотрим конкретный, очень важный для дальнейшего, пример. Речь пойдет о фотоионизации межзвездных атомов при поглощении ими ультрафиолетовых квантов «разжиженного» излучения. В процессе такой ионизации «освободившиеся» от атомов электроны приобретают кинетическую энергию, определяемую известным уравнением Эйнштейна:

теУ2

к» = С + -2-’                                                                 (2Л)

где V — частота кванта поглощенного излучения, С — потенциал ионизации, определяющий энергию связи электрона в атоме. Из этой формулы, опирающейся на основные представления квантовой теории, следует, что кинетическая энергия фотоэлектрона определяется только частотой поглощенного кванта. Она совершенно не зависит от плотности таких квантов в окружающем пространстве. Поэтому кинетические энергии фотоэлектронов в межзвездном пространстве будут такими же, как в атмосферах звезд, т. е. довольно высокими, порядка нескольких электронвольт. Сталкиваясь между собой, эти электроны сравнительно быстро установят максвеллово распределение скоростей, следовательно, можно будет говорить об их кинетической температуре. С другой стороны, по причине неупругих столкновений с атомами электроны будут непрерывно терять энергию. В результате «баланса» между «потерянной» таким образом и «приобретенной» (при фотоионизации) энергиями температура межзвездной среды около горячих звезд устанавливается на довольно высоком уровне около 10 000 К.

Низкая плотность излучения в межзвездном пространстве в сочетании с крайне низкой плотностью межзвездного газа имеет и другое очень важное следствие, о котором мы уже упоминали раньше. Так как по этой причине процессы поглощения излучения атомами будут происходить очень редко, возбужденные каким-либо образом атомы и молекулы будут без всяких препятствий переходить в основное состояние, излучая при этом соответствующие кванты. Это будет иметь место и тогда, когда возбужденные уровни «метастабильны», т. е. атомы могут находиться на них аномально долго. В условиях земных лабораторий благодаря столкновениям и процессам поглощения света, связанным с переходами атомов на «вышележащие» уровни, переход с метастабильного уровня на основной не сопровождался бы излучением квантов соответствующей частоты. В условиях же межзвездной среды находящийся на метастабильном уровне атом может достаточно долго «ждать» — ведь ему никакие столкновения или поглощения не мешают — ив конце концов перейти на основной уровень, излучив квант спектральной линии, называемой у спектроскопистов «запрещенной»1.

Так как никакие процессы взаимодействия возбужденных атомов с веществом и излучением «не успевают» произойти, практически все атомы, ионы и молекулы могут совершать переходы только «вниз», в основное состояние, излучая соответствующие кванты. Переходы «вверх», т. е. в состояние с более высокой энергией, возможны только для атомов, находящихся в самом «глубоком», основном состоянии. Как правило, такие процессы связаны с поглощением ультрафиолетовых квантов, так как частоты резонансных линий и потенциалы ионизации атомов и ионов достаточно велики. Таким образом, в межзвездной среде должен происходить очень важный процесс «переработки» квантов: атомы поглощают ультрафиолетовые кванты, а потом, после рекомбинации на возбужденные уровни и ряда «каскадных» переходов «вниз», на основной уровень, излучают менее энергичные кванты, длины волн которых находятся в оптическом диапазоне. Такой процесс в лабораторной физике носит название «флуоресценции».

В межзвездном пространстве типичной является следующая ситуация. Облако межзвездного газа, находящееся в сравнительной близости от горячей (и поэтому сильно излучающей в ультрафиолетовой части спектра) звезды поглощает кванты, способные ионизовать водород. Длина волны таких квантов должна быть меньше 912 А. Из-за поглощения этих квантов подавляющая часть водородных атомов в облаке становится ионизованными. Электроны, рекомбинируя с протонами, будут излучать уже кванты в видимой и инфракрасной областях, например, в линиях бальмеровской серии. Те нее электроны, сталкиваясь с атомами и ионами кислорода, азота, серы и других элементов, будут возбуждать имеющиеся у них метастабильные уровни. Последние будут беспрепятственно «высвечиваться», излучая при этом запрещенные линии.

Области межзвездного газа, расположенные в сравнительной близости от горячих звезд-гигантов спектральных классов О и В, обязательно должны быть полностью ионизованными. Будет ли, однако, ионизован весь межзвездный газ? Расчеты, подкрепленные наблюдениями (см. ниже), показывают, что в большей части межзвездной среды водород будет не ионизован. Горячие звезды способны ионизовать водород вокруг себя только до определенного расстояния, зависящего как от мощности ультрафиолетового излучения звезды, так и от плотности межзвездной среды. Таким образом, «топология» ионизации межзвездной среды выглядит весьма своеобразно: вокруг горячих звезд имеются замкнутые полости (в идеальном случае постоянной плотности межзвездной среды — сферы), где водород ионизован, в то время как между полостями водород нейтрален. Области межзвездной среды, где водород ионизован, называются «зоны Н II», а области нейтрального водорода — «зоны Н I». Радиус какой-нибудь зоны Н II определяется из баланса ионизации внутри нее: количество поглощенных в этой зоне за единицу времени ультрафиолетовых

квантов (которые излучаются горячей звездой) равно количеству рекомбинаций между протонами и электронами. Так как каждый поглощенный квант приводит к появлению пары ионов, в тс время как каждый акт рекомбинации уничтожает пару ионов, наше условие просто означает неизменность состояния ионизации со временем. Запишем это условие математически:

4 уВ3аМ>М =              ,                                                       (2.2)

3                          ПУ

где В — радиус зоны ионизации, которую мы предполагаем сферической, аМеМ — число рекомбинаций в единице объема за секунду, Ме = М — концентрации электронов и ионов, а — коэффициент рекомбинации, Ь(Т) — мощность ультрафиолетового излучения звезды, зависящая от температуры ее поверхности, Пу — средняя энергия ультрафиолетовых квантов. Из формулы (2.2) следует, что

В = ф(т) • Ме-2/3.                                                               (2.3)

Расчеты показывают, что при Ме ~ 1 см-3 (величина, недалекая от действительности; см. ниже) для звезд спектральных классов О и В величина В может достигнуть многих десятков парсек. Внутри этой огромной области находятся десятки тысяч звезд. Интересно, что переход между зонами Н II и Н I очень резок: на протяжении каких-нибудь сотых долей парсека межзвездный водород из состояния почти 100%-ной ионизации переходит в нейтральное состояние.

Все поглощенное ультрафиолетовое излучение центральной горячей звезды зона Н II «перерабатывает» в «видимые» и «инфракрасные» кванты бальмеровской и пашенов- ской серий водорода и в запрещенные линии, а также в ультрафиолетовые кванты линии «лайман-альфа». Поэтому для наблюдателя такая зона должна представлять собой неправильной формы протяженный объект, более или менее сильно излучающий в отдельных спектральных линиях. Но это есть не что иное, как газовые туманности, наиболее яркие из которых (например, в созвездии Ориона) уже очень давно известны астрономам. Излучение единицы объема такой туманности обусловлено различного рода столкновениями между электронами и ионами, приводящими к появлению атомов и ионов в возбужденных состояниях. Поэтому указанное излучение должно быть пропорционально квадрату плотности Ме2. Основной характеристикой, определяющей условия наблюдения туманностей, является их поверхностная яркость, которая пропорциональна произведению излучения единицы объема на протяженность излучающей области по лучу зрения В. Следовательно, поверхностная яркость туманности I пропорциональна величине М2В, называемой «мерой эмиссии».

На рис. 2.3-2.5 приведены несколько фотографий областей Н II- газовых туманностей. Эти фотографии получены через фильтр, пропускающий красную водородную линию На. Хорошо видно сложное распределение яркости у этих объектов. Следует, однако, иметь в виду, что «клочковатая» структура поглощающих свет пылевых облаков (проектирующихся на туманности либо находящихся в них) сильно искажает действительную картину распределения яркости.

Зная из астрономических наблюдений поверхностную яркость туманности, всегда можно получить соответствующую ей меру эмиссии. Если при этом известна ее протяженность по лучу зрения В, то сразу же определяется величина Ме, т.е. плотность межзвездного газа. Следует, однако, подчеркнуть, что по причине весьма неоднородного распределения межзвездного газа таким образом определенная плотность имеет смысл некоторого среднего значения. Оказывается, что в облаках межзвездного газа средняя плотность — около 10 ионизованных атомов водорода на кубический сантиметр. Отдельные, очень плотные облака имеют концентрацию атомов порядка нескольких тысяч на кубический сантиметр и больше. Такие плотные облака наблюдаются как очень яркие туманности. Концентрация атомов в межзвездном пространстве между облаками по крайней мере в сотню разменьше, чем в облаках. Концентрации атомов в облаках межзвездного газа, где водород не ионизован (зоны Н I), с большой надежностью находятся из анализа ультрафиолетовых линий поглощений этого газа в спектрах звезд, получаемых на орбитальных астрономических обсерваториях. В частности, по спектрограммам, полученным на спутнике «Коперник», можно сделать количественный химический анализ межзвездной среды. Для исследовавшихся таким образом облаков, проектирующихся на сравнительно близкие к нам звезды, концентрация водорода оказалась порядка нескольких сотен на кубический сантиметр.

Тщательный анализ спектров, полученный на «Копернике» от сравнительно близких (находящихся от нас на расстоянии от 20 до 150 пс) звезд, лишенных какого бы то ни было покраснения, обусловленного космической пылью, позволил исследовать физические свойства весьма разреженной межзвездной среды, находящейся между облаками. В этом случае интенсивность межзвездных линий поглощения очень мала. В основном наблюдались резонансные линии однократно ионизованных атомов. Создается впечатление, что тяжелых элементов в межоблачной среде относительно меньше, чем в облаках. Концентрация водорода в межоблачной среде меняется в довольно широких пределах от 0,2 до 0,02 см-3.

Межзвездный газ в Галактике концентрируется в очень тонком слое около ее плоскости симметрии. Толщина этого слоя не превышает 200 пс, а средняя концентрация частиц в нем около 1 см-3. Такой средней концентрации атомов соответствует средняя плотность около 10-24 г/см3. Заметим, что средняя плотность межзвездной пыли приблизительно в

сто раз меньше. Любопытно отметить, что плотность тяжелых элементов в межзвездном газе (т.е. всех элементов, исключая водород и гелий) около 10-26 г/см3. Так как межзвездные пылинки состоят преимущественно из тяжелых элементов, это означает, что примерно половина всех тяжелых элементов в межзвездной среде «связана» в твердых частицах, между тем как вторая половина находится в газообразном состоянии. Это удивительное обстоятельство, которое пока ещё не нашло объяснения, должно иметь большое значение для понимания происхождения межзвездной пыли.

Итак, концентрация атомов межзвездного газа по крайней мере в миллиард миллиардов раз меньше, чем в земной атмосфере. Тем более парадоксальным является утверждение, что межзвездный газ отнюдь не является вакуумом! В самом деле, что такое вакуум? Оказывается, далеко не всякий, даже очень разреженный газ можно считать вакуумом. Только тогда, когда длина свободного пробега частиц газа больше, чем размеры объема, в котором этот газ находится, можно говорить о вакууме. Например, в газоразрядной трубке концентрация атомов газа может быть 1012 см-3. Тогда длина свободного пробега I ~ 1/па, где а ~ 10-15 см2 — поперечное сечение атомов при столкновениях. Если длина трубки меньше метра, можно говорить о вакууме. В межзвездном пространстве при п ~ 1 см-3 I ~ 1015 см, т. е. 3 10-4 пс, между тем как толщина газового диска в Галактике около 200 пс. При таких условиях ни о каком вакууме не может быть речи. Межзвездный газ — это непрерывная, сжимаемая среда, континуум. К нему полностью применимы законы газовой динамики. По этой непрерывной среде распространяются волны, например, ударные. В частности, об одном важном типе ударных волн в межзвездной среде, вызванном взрывом звезд, речь будет идти в § 16. Эта среда охвачена сложным, турбулентным движением, по ней обычно проходит мелкая «рябь», о которой разговор будет идти в § 21. Следует еще иметь в виду, что эта непрерывная среда обладает довольно высокой электропроводностью, так как она либо полностью (в зонах Н II), либо частично (в зонах Н I) ионизована. Из-за высокой проводимости межзвездной среды наличие в ней межзвездных магнитных полей приводит к очень интересным эффектам. Магнитные силовые линии как бы «приклеены» к межзвездному газу и следуют за причудливыми движениями его облаков. Часто межзвездное магнитное поле, если оно достаточно сильно, как бы «контролирует» движения облаков, запрещая им двигаться поперек силовых линий. Очень важная ветвь современной физики, имеющая большое прикладное значение — магнитная гидродинамика — родилась в астрономии, в частности, при исследовании природы межзвездного газа.

Если до войны астрономы ограничивались только изучением специфических процессов взаимодействия межзвездного газа и поля «разжиженного» излучения, то в послевоенный период все большее значение приобретает магнитно-гидродинамический аспект этой проблемы. Особенно большое значение этот аспект имеет для центральной проблемы, которая нас интересует — образования звезд из межзвездной среды путем конденсации последней. Этой проблеме будет посвящен следующий параграф.

До сих пор, говоря о межзвездном газе, мы имели в виду преимущественно зоны Н II, излучающие спектральные линии в оптическом диапазоне длин волн и поэтому с особой тщательностью исследуемые методами оптической астрономии. До войны информация (весьма скудная!) о зонах Н I могла быть получена только путем изучения межзвездных линий поглощения. Этот метод получил существенное развитие в послевоенные годы в связи с успехами внеатмосферной астрономии. После войны в связи с развитием радиоастрономии началась новая эпоха в исследованиях межзвездного газа. Еще в 1944 г. голландский студент-астроном ван де Хулст (ныне он директор обсерватории Лейденского университета) выдвинул блестящую идею, суть которой сводится к следующему: если два атомных уровня находятся очень близко друг к другу (т. е. очень мало отличаются по своим энергиям), то переход атома с «верхнего» уровня на «нижний» будет сопровождаться излучением кванта, длина волны которого приходится на радиодиапазон. И как важней-

ший пример такого перехода, молодой голландский астроном указал на атом водорода, находящийся в самом «глубоком» квантовом состоянии. Уже давно известно, что этому состоянию соответствуют два очень близких уровня. Разность энергии между указанными двумя уровнями есть результат взаимодействия собственных магнитных моментов, образующих водородный атом протона и электрона. В свою очередь магнитные моменты связаны со спинами соответствующих элементарных частиц. Это давно уже известное в спектроскопии явление наблюдается как расщепление спектральных линий на несколько очень близких друг к другу компонент (так называемая «сверхтонкая структура»). По оценке ван де Хулста переход между «верхним» и «нижним» уровнями сверхтонкой структуры атома водорода должен сопровождаться излучением линии с длиной волны 21 см. Спустя четыре года, случайно узнав об идее ван де Хулста и весьма заинтересовавшись ею, автор этой книги произвел детальный теоретический анализ этой идеи. Прежде всего надо было оценить, как долго будет находиться атом водорода на «верхнем» уровне сверхтонкой структуры, пока он самопроизвольно перейдет на нижний уровень, излучив квант в линии 21 см. Ведь от этого зависит интенсивность этой линии, т. е. сама возможность ее наблюдения, что прежде всего интересовало астрономов. Оказалось, что это время т непомерно длинно, целых 11 миллионов лет! Напомню, что обычная продолжительность жизни в возбужденном состоянии у атомов, излучающих «оптические» линии, около стомиллионной доли секунды!

Находящийся на верхнем уровне сверхтонкой структуры атом водорода с гораздо большей вероятностью перейдет на нижний уровень без излучения кванта 21 см. Это будет иметь место при обычных столкновениях между атомами водорода. Для атома водорода, находящегося в облаке межзвездного газа, промежуток времени между двумя такими столкновениями будет «всего лишь» несколько сотен лет — срок относительно ничтожный. С другой стороны, такие же столкновения будут приводить к возбуждению верхнего уровня сверхтонкой структуры. В результате установится некоторое равновесное распределение атомов по уровням сверхтонкой структуры, при котором на верхнем уровне атомов будет в три раза больше, чем на нижнем. Имея в виду это обстоятельство, можно написать выражение для излучения единицы объема в квантах линии 21 см:

3

е =                                                                                (2.4)

где А = 1/т — вероятность перехода, сопровождающегося излучением кванта 21 см,Нп — энергия этого кванта, пн — концентрация атомов водорода. Интенсивность этого излучения найдется по обычной формуле:

I = 4- ек,                                                                  (2.5)

где, как и раньше, К означает протяженность излучающей области по лучу зрения. Формула (2.5) справедлива только тогда, когда излучение не поглощается самими излучающими атомами. В нашем случае, как оказывается, это не так. Однако даже с учетом самопоглощения интенсивность линии 21 см настолько велика, что чувствительность послевоенной радиоастрономической аппаратуры была вполне достаточна, чтобы эту линию обнаружить.

Линия 21 см должна иметь совершенно определенный профиль (т. е. не быть бесконечно узкой). Дело в том, что излучающие эту линию атомы межзвездного нейтрального водорода участвуют в нескольких движениях, что по причине эффекта Доплера приводит к расширению линии. Атомы межзвездного водорода, во-первых, имеют тепловые скорости, соответствующие их кинетической температуре, во-вторых, отдельные облака межзвездного газа движутся как целое со скоростью около 10 км/с. Наконец межзвездный газ, также как и звезды, участвует в галактическом вращении. Скорость галактического вращения весьма велика — в окрестностях Солнца она около 200 км/с, причем само вращение носит довольно сложный, отнюдь не «твердотельный» характер. На профиль радиолинии 21 см должно влиять дифференциальное галактическое вращение, точнее, обусловленная этим вращением разность лучевых скоростей какой-нибудь области межзвездной среды и Солнца. Дифференциальное галактическое вращение зависит от галактической долготы.

После того как она была теоретически предсказана и рассчитана, линия 21 см была обнаружена в 1951 г. в США, Австралии и Голландии, На рис. 2.6 приведено несколько профилей радиолинии водорода 21 см. Типичная ширина линии (в шкале частот) порядка нескольких десятков килогерц. Из таких профилей можно было получить исключительно богатую информацию о зонах Н1, Прежде всего оказалось, что кинетическая температура там около 100 К, причем местами она опускается до немногих десятков градусов1. Низкая температура зон Н I объясняется отсутствием там процессов фотоионизации водорода, В результате фотоионизации в газе появляется значительное количество довольно энергичных, фотоэлектронов, которые, сталкиваясь с атомами и ионами, передают им свою энергию, т. е. «греют» их (см. выше). Такой мощный «нагреватель» в зонах Н I отсутствует.

Не следует, однако, думать, что в зонах Н I совсем нет свободных электронов. Они есть, но их там в тысячи раз меньше, чем в зонах Н II, В зонах Н I электроны образуются, главным образом, по причине ионизации атомов космическими лучами сравнительно небольших энергий (порядка нескольких миллионов электрон-вольт), которых там довольно много2, а также мягким рентгеновским излучением, пронизывающим всю Галактику

(см. § 23). Кроме того, электроны в зонах Н I будут образовываться и путем обычной фотоионизации элементов, у которых потенциал ионизации меньше, чем у водорода, К числу таких элементов в первую очередь относится углерод.

Этот элемент играет особенно большую роль в тепловом балансе зон Н I, так как действует там как весьма эффективный «холодильник». Дело в том, что если бы энергия образующихся при ионизации электронов в конце концов не покидала бы облака межзвездной среды в виде излучения, даже ничтожно малая ионизация, действуя длительное время, разогрела бы холодный газ до высокой температуры, определяемой условием кТ = е (где е — средняя энергия фотоэлектронов). Образующиеся при ионизации электроны, сталкиваясь с атомами, непрерывно передавали бы им свою кинетическую энергию, а следовательно, нагревали бы. Но этого не происходит. Ведь наряду с «упругими» столкновениями между электронами и атомами, сопровождающимися передачей кинетической энергии от электронов к атомам, будут иметь место и «неупругие» столкновения, приводящие к возбуждению атомов и последующему излучению квантов. Благодаря таким столкновениям кинетическая энергия электронов трансформируется в излучение.

Не все атомы «равноценны» для неупругих столкновений. Очевидно, что если энергия возбуждения у какого-нибудь сорта атомов слишком велика, только ничтожная доля электронов будет обладать кинетической энергией, достаточной для возбуждения. Поэтому механизм «оттока» энергии путем возбуждения этих атомов будет неэффективен. Наиболее эффективными для охлаждения газа будут такие атомы (или молекулы), у которых энергия возбуждения близка к тепловой энергии электронов, хотя таких атомов может быть сравнительно немного. Именно такими свойствами обладают атомы углерода — как ионизованного, так и нейтрального. В зонах Н I, как уже говорилось выше, атомы углерода ионизованы. Их уровень возбуждения соответствует тепловой энергии частиц при температуре 92 К. В межзвездной среде в зонах Н I должно быть тепловое равновесие — сколько энергии газ приобретает по причине нагрева из-за ионизации, столько же он должен терять из-за излучения возбужденных столкновениями атомов углерода. В результате такого равновесия и устанавливается некоторая постоянная кинетическая температура порядка нескольких десятков градусов. Именно такая температура и получается из анализа профилей радиолинии 21 см в облаках. Таким образом, атомы углерода как бы «термостатируют» эти облака.

Заметим в этой связи, что в «горячих» зонах Н II также имеет место тепловое равновесие. Однако в этом случае роль «термостата» выполняют ионизованные атомы кислорода и азота, у которых возбужденные уровни расположены значительно выше, чем у углерода. При возбуждении этих уровней как раз излучаются запрещенные линии, о которых речь шла раньше. В результате теплового равновесия в зонах Н II кинетическая температура устанавливается на уровне около 10 000 К, что соответствует средней кинетической энергии имеющихся там частиц (ионов, электронов) около 1 электронвольта. Между тем средняя кинетическая энергия электронов, образовавшихся после ионизации водорода «ультрафиолетовыми» квантами, в несколько раз выше.

Вернемся, однако, к зонам Н I, где нагрев газа осуществляется главным образом благодаря его ионизации «мягкими» космическими лучами и рентгеновскими квантами. Если бы мы знали концентрацию космических лучей и рентгеновских квантов, то могли бы точно вычислить кинетическую температуру газа и степень ионизации в зависимости от его плотности. С другой стороны, температура и плотность облаков известны из радиоастрономических наблюдений, поэтому не представляет труда рассчитать концентрацию космических лучей и рентгеновских квантов. Если известны температура и плотность

газа, то тем самым известно его давление. Вычисленная таким образом зависимость давления межзвездного газа от его плотности (точнее, от пропорциональной ей концентрации частиц газа) приведена на рис. 2.7. Эта кривая имеет довольно своеобразный вид, напоминающий известную из молекулярной физики кривую ван дер Ваальса. Мы сейчас увидим, что это сходство далеко не случайно.

Из этой кривой следует, что при малых концентрациях межзвездного газа (до 0,1 см-3) давление растет с ростом концентрации, причем кинетическая температура держится на характерном для зон Н II уровне 7000—10 000 К. При концентрациях, превышающих 0,1 см-3, температура газа резко падает до значения, характерного для зон Н I, что приводит к уменьшению давления с ростом концентрации. При дальнейшем увеличении концентрации температура газа, почти достигая своего минимального значения, уменьшается медленно. Поэтому рост плотности «перевешивает» уменьшение температуры и давление снова начнет расти. Из этой кривой видно, что существует такой интервал давлений (от 310-13 до 10-14 бар), при котором одному определенному значению давления соответствуют три значения плотности газа (ВС). Состояние газа, как известно, считается заданным, если для него известны давление и плотность (или температура). Мы можем, следовательно, сделать вывод, что одному определенному значению давления межзвездного газа соответствуют три его различных состояния. На том участке изображенной на рис. 2.7 кривой, где давление падает с ростом плотности, состояние газа является неустойчивым: любое случайное малое уплотнение какой-нибудь части газа будет сильно расти, так как при таком уплотнении внутреннее давление этой части газа уменьшается, а оставшееся «некомпенсированным» внешнее давление от окружающего газа (которое не изменилось) начнет ее сжимать. Сжатие будет происходить до тех пор, пока точка, описывающая состояние сжимаемого газа, не переместится вдоль изображенной на рис. 2.7 кривой в области, где давление начнет расти с ростом плотности. Таким образом, межзвездный газ находится в состоянии тепловой неустойчивости: первоначально однородный, он неизбежно должен разделиться на две «фазы» — сравнительно плотные облака и окружающую их весьма разреженную среду. Тепловая неустойчивость межзвездного газа является, таким образом, одной из важнейших причин его «клочковатой», облачной структуры. Такая структура хорошо наблюдается на волне 21 см. Размеры, плотность и скорость облаков нейтрального водорода сходны с облаками ионизованного водорода в зонах Н II. Следовательно, природа облачной структуры как в областях межзвездной среды, где водород нейтрален, так и областях ионизованного водорода должна быть одинаковой. Обрисованная выше картина тепловой неустойчивости межзвездного газа, развитая трудами известного советского астронома С. Б. Пикельнера, дает этому вполне удовлетворительное объяснение.

Важнейшим результатом исследований на волне 21 см является вывод о том, что сравнительно плотные облака межзвездного нейтрального водорода, в частности, «газово-пылевые комплексы» (о них см. следующий параграф), группируются вдоль ветвей спиральной структуры Галактики. Аналогичное явление имеет место и для оптически

наблюдаемых зон Н II, но в этом случае, из-за поглощения света в космической пыли, спиральная структура Галактики не может быть прослежена на больших расстояниях от Солнца. Тот факт, что сравнительно плотные зоны Н II группируются в спиральные рукава, вместе с тем означает, что массивные горячие звезды спектральных классов О и В также группируются в спиральных рукавах. Это, конечно, не случайно и, как мы увидим в следующем параграфе, имеет прямое отношение к проблеме происхождения звезд.

Что же такое спиральные рукава? Каково их происхождение? Мы не можем пройти мимо вопроса о происхождении спиральной структуры нашей и других звездных систем, так как эмпирически ясно, что процесс звездообразования происходит как раз там. Долгое время на вопрос о происхождении спиральной структуры галактик давались различные и притом неправильные ответы. Обычно наличие спиральной структуры связывалось с растягиванием облаков межзвездного газа «дифференциальным» вращением Галактики. Известно, что наша звездная система вращается вокруг оси, перпендикулярной к ее плоскости, не как твердое тело, а значительно сложнее. Центральные области Галактики вращаются значительно быстрее, чем периферия. Поэтому вытекающие из центра Галактики облака межзвездного газа, как можно полагать, должны закручиваться и распределяться вдоль некоторой спирали. Отвлекаясь от вопроса о выбрасывании облаков межзвездного газа из центральных областей Галактики, который весьма далек от ясности, укажем только на одну непреодолимую трудность, связанную с этой к концепцией. Дело в том, что за время эволюции Галактики (около 10 миллиардов лет) спиральные рукава должны были бы закрутиться вокруг центра Галактики много десятков раз, так как период галактического вращения в окрестностях Солнца около 200 миллионов лет. Между тем спиральные рукава закручиваются вокруг центра всего лишь несколько раз (см. рис. 2.9). Следовательно, налицо поразительная «устойчивость» рукавов по отношению к дифференциальному вращению Галактики.

Решение этой старой проблемы было получено сравнительно недавно, немногим больше 15 лет назад, американским астрономом китайского происхождения Лином, развившим идеи шведского астронома Линдблада. Основная идея Лина — Линдблада состояла в том, что всякий спиральный рукав представляет собой не некоторое «материальное» образование, а волну. Разница между новой и старой трактовками весьма существенна. По старой концепции одни и те же облака как бы «привязаны» к конкретному рукаву, в то время как по новой концепции облака межзвездной среды только «временные» жители рукава. Межзвездный газ втекает в рукава, довольно долго задерживается там, после чего выходит за пределы рукава, а на его место придут другие облака межзвездного газа. Сказанное относится также и к звездам. Именно по этой причине форма рукава (спираль!) оказывается такой стабильной, несмотря на дифференциальное галактическое вращение. Ведь во внутренних частях рукава, по причине более быстрого галактического вращения, образующие его элементы (облака, звезды) быстрее «обновляются». Сам рукав при этом следует пред-ставлять вращающимся вокруг галактического центра как целое с постоянной угловой скоростью.

На рис. 2.8 показана схема движения звезд через спиральный рукав во внутренней части Галактики. Так как звезды там движутся с большей угловой скоростью, чем рукав, они будут «догонять» его с внутренней стороны. Войдя в него, они благодаря притяжению уже имеющихся там звезд «сбиваются» со своих круговых орбит вокруг галактического центра и движутся через рукав заметно медленнее. Точнее говоря, у звезд уменьшается составляющая скорости, перпендикулярная к оси рукава, поэтому они движутся под сравнительно малым углом к ней и, следовательно, проводят в рукаве сравнительно большое время. По этой причине звездная плотность в рукаве растет, что приводит к увеличению силы гравитационного притяжения на вновь втекающие в рукав звезды. После того как звезды выходят из облаков, они возобновляют свое более быстрое движение вокруг центра, пока опять не догонят рукав.

Аналогичная картина наблюдается и для втекающих в рукав облаков газа. Он также уплотняется. Заметим, что в рукавах имеются как сравнительно плотные облака, так и довольно разреженный межоблачный газ, причем давление в обоих «фазах» одинаково на кривой, изображенной на рис. 2.7, где состояние газа в облаках и межоблачной среде изображается точками В и С. После того как межзвездный газ выйдет из рукавов, его плотность значительно уменьшится, но две фазы — облака и межоблачная среда — сохранятся. Соответствующие состояния изображаются на рис. 2.7 точками А и В. Таким образом, между рукавами также имеются как облака, так и межоблачная среда. Но в то время, как средняя концентрация газа в облаках, находящихся в рукаве, ~ 3—5 см-3, между рукавами она ~ 0,2—0,3 см-3; между облаками соответствующие величины раз в десять меньше, поэтому их можно наблюдать только методами внеатмосферной «ультрафиолетовой» астрономии (см. выше).

Новый газ, входящий в рукав, довольно резко тормозится уже присутствующим там газом. При такой ситуации могут возникнуть ударные волны. При этом плотность газа скачкообразно увеличивается. На внутренней кромке ударной волны газ нагревается, но немного подальше его температура уже будет «нормальной», соответствующей рис. 2.7. Сжатие газа в ударной волне является, конечно, дополнительным фактором, увеличивающим его плотность. А это, как мы увидим в следующем параграфе, способствует ускорению процесса звездообразования.

Наглядной иллюстрацией правильности нового взгляда на природу спиральных рукавов галактик дает фотография галактики М51, приведенная на рис. 2.9. На этой фотографии хорошо видны темные узкие полосы, идущие вдоль внутренних краев рукавов. Эти полосы обусловлены космической пылью, которая из-за ударной волны уплотняется вместе с газом, входящим в эту часть рукава.

Методом радионаблюдений на волне 21 см во всех деталях исследовалось вращение Галактики, на основании чего была построена ее динамическая модель. Неоценимым преимуществом радиоастрономических наблюдений является то, что они свободны от влияния поглощения космической пылью. Это дает возможность наблюдать облака межзвездного газа в самых отдаленных областях Галактики. Особый интерес представляют исследования ядра нашей звездной системы и окружающей его области, совершенно недоступные для оптической астрономии из-за практически полного поглощения света в этом направлении. Мы упомянули только малую часть фундаментальной важности результатов, полученных за последнюю четверть века благодаря исследованиям на волне 21 см. Без преувеличения можно сказать, что современная астрономия просто немыслима без разнообразных применении этого исключительно эффективного метода.

Большой удачей явилось и то обстоятельство, что радиолинию 21 см излучает самый распространенный элемент во Вселенной.Сверхтонкая структура у самого глубокого уровня — явление не такое уж распространенное у атомов. Например, этого нет у гелия, кислорода, углерода. Но еще в 1948 г. автор этой книги обратил внимание на то, что в радиоспектре Галактики следует ожидать аналогичной природы линию тяжелого изотопа водорода — дейтерия с длиной волны около 92 см. Только спустя 24 года эта слабая линия была обнаружена. Содержание дейтерия в межзвездной среде в десятки тысяч раз меньше, чем «нормального» водорода. Имеются некоторые основания полагать, что межзвездный дейтерий является «реликтом»: не исключено, что он образовался в первые 15 минут существования Вселенной, когда она представляла собой весьма горячую и плотную смесь протонов, электронов, нейтронов, нейтрино и квантов света1. Если это так, то современная средняя плотность Вселенной должна быть около 10-31 г/см3 и Вселенная не может быть замкнутой. Вот какие важные выводы можно сделать из обнаруженной очень слабой радиолинии межзвездного дейтерия!

Как и всякая плазма, зоны Н II являются источниками теплового радиоизлучения с непрерывным спектром. На низких частотах ионы Н II непрозрачны для своего теплового излучения, а их радиоспектр описывается законом Рэлея—Джинса, согласно которому интенсивность пропорциональна квадрату частоты и первой степени температуры. На высоких частотах эти зоны прозрачны и их интенсивность, так же как и в оптических лучах, пропорциональна мере эмиссии. Однако в то время как наблюдаемая интенсивность в оптическом диапазоне сильно искажена межзвездным поглощением света, на частотах радиодиапазона влияние этого поглощения совершенно ничтожно. Только хорошие радиоизображения зон Н II позволяют восстановить их истинную структуру.

Кроме непрерывного спектра, зоны Н II излучают еще радиолинии. Природа этих линий весьма своеобразна. Они возникают при переходах между соседними весьма высоко возбужденными уровнями атомов, водорода, а также других элементов. Речь идет об уровнях, для которых главное квантовое число п ~ 100—200 и даже больше. Такие

уровни «заселяются» после рекомбинаций электронов с протонами1. Заметим, что в лабораторных плазмах, а также в звездных атмосферах столь высокое возбуждение атомов никогда не достигается — этому мешает взаимодействие возбужденного атома с окружающими заряженными частицами. Рекомбинационные радиолинии лучше всего наблюдать на сантиметровом и миллиметровом диапазоне.

Представляется очевидным, что линии несут в себе значительно больше информации, чем непрерывный спектр, так как исследование профилей открывает возможность изучить движение излучающих облаков. В настоящее время метод изучения зон Н II по рекомбинационным радиолиниям, причем не только водорода, но и гелия, углерода, а также других элементов, является едва ли не самым эффективным.