6. Гиганты среди гигантов

От крошечных астероидов мы перейдем к четырем гигантам — Юпитеру, Сатурну, Урану и Нептуну. Они получили различные титулы, каждый из которых подчеркивает их размеры, — большие планеты, семейство Юпитера, газовые гиганты.

Существует еще одна, последняя планета, Плутон, не включенная в группу больших планет из-за малых размеров и других особенностей.

Название «газовые гиганты», вероятно, лучше всего характеризует «большую четверку», ибо все они имеют низкую плотность. По-видимому, они в основном состоят из газов с незначительными примесями более тяжелых элементов или металлов, характерных для планет земной группы.

Эта теория подтверждается спектроскопическими наблюдениями, свидетельствующими о высоком содержании водорода — самого легкого газа — в атмосферах членов «большой четверки». Этот газ, редкий в атмосферах планет с малой силой тяжести, удерживается «мертвой хваткой» массивных гигантов и образует молекулы двух газов — метана (СН4) и аммиака (NH3).

Считается, что смесь газов должна составлять от 50 до 80 % полной массы газовых гигантов, в то время как общее количество твердого вещества в их ядрах должно быть сравнительно мало. Миниатюрные каменные или металлические ядра могут быть окружены очень толстым слоем льда и твердого аммиака, находящимся под высоким давлением и покрытым полужидким слоем сильно сжатого газового тумана.

Сходство этих четырех планет дополняется другими общими свойствами: низкой средней температурой, высоким атмосферным давлением на поверхности, многочисленными спутниками, достигающими иногда размеров «настоящих» планет, высокими значениями первой космической скорости (минимальная скорость, необходимая для преодоления силы тяжести планеты) и удивительно короткими сутками — следствие быстрого вращения. Однако каждый из них обладает отличительными особенностями. В этой главе мы познакомимся с двумя из четырех больших планет — Юпитером и Сатурном; Уран и Нептун будут рассмотрены в следующей главе. В порядке удаления от Солнца мы начнем с полосатой планеты, находящейся на расстоянии 800 млн. км .

Юпитер

Почти все, что касается Юпитера, самой крупной из внешних планет, способно ошеломить при первом знакомстве. Его экваториальный диаметр — 140 000 км — приблизительно в 11 раз больше земного. По весу Юпитер уравновесил бы 318 таких «гирь», как Земля. В сравнении с Землей его объем фантастичен: потребовалось бы более 1300 шаров каждый размером с Землю, чтобы наполнить пустую полость объемом с Юпитер. Эта громадина вдвое превосходит по массе остальные восемь планет вместе с их спутниками.

Естественно, что сфера гравитационного влияния этого Гаргантюа составляет около половины солнечной системы. Он сбивает кометы с их орбит, крадет астероиды, разорвал Астероидию и обзавелся миниатюрной «солнечной системой», в том числе двумя спутниками, каждый из которых больше Меркурия.

Космонавтам, высаживающимся на Юпитер, следует приготовиться к тому, что они будут весить четверть тонны, так как ускорение силы тяжести равно 2,67 g . На быстро вращающемся экваторе притяжение уменьшается до 2,5 g , а на полюсах вследствие отсутствия центробежной силы и сплюснутости возрастает до 2,84 g .

Пока космический корабль не разовьет тягу в пять раз большую, чем требуется на Земле, он не сможет преодолеть притяжения Юпитера, так как скорость убегания равна 60 км/сек (215 000 км/час ). Именно эта невероятная сила притяжения помогла Юпитеру добиться того, чего не удается ни одной другой планете, — «украсть» четыре члена из семейства астероидов и сделать их пасынками вместе с восемью законными спутниками, «родившимися» еще при образовании солнечной системы.

Толщина атмосферы Юпитера 13 000 км — целый диаметр Земли. Юпитер часто называют полосатой планетой, так как в телескоп отчетливо видно по меньшей мере шесть зон, параллельных экватору.

Все эти коричневые, оранжевые и желтые облачные полосы вращаются с разной скоростью…

Загадка 1. Какова действительная скорость вращения твердой поверхности Юпитера, замаскированной вращающимися с разными скоростями атмосферными полосами?

Ни один квадратный миллиметр поверхности Юпитера ни разу не удалось увидеть через массу тумана, который можно сравнить разве только с самыми плотными штормовыми тучами на Земле, наслаивающимися друг на друга ярус за ярусом на протяжении сотен и тысяч километров. Следовательно, нельзя найти какой-либо ориентир, по которому можно было бы судить о вращении поверхности планеты. Поэтому астрономы наблюдают движение деталей наружного облачного слоя, которые позволяют достаточно уверенно определить период вращения, но дают различные результаты в зависимости от широты. Период вращения наружного облачного слоя на экваторе равен 9 часам 50 минутам, на полюсе — на 5 минут больше, а на промежуточных широтах находится между ними. Мы назвали только скорость вращения самого верхнего слоя атмосферы. Что можно сказать о вращении слоев на глубине 3000, 5000, 10 000 км от границы атмосферы? И какова действительная скорость вращения поверхности, находящейся на глубине 13 000 км ?[19]

Неожиданные изменения скорости вращения только один из сюрпризов атмосферы Юпитера — настоящего мира чудес.

Загадка 2. Что представляет собой Красное пятно, отстающее от общего вращения?

Впервые Красное пятно наблюдалось в 1878 г. Оно имеет форму огромного овала — 50 000 км на 20 000 км , который внезапно стал красным, выделяясь на светлом фоне южной тропической зоны. Пятно, которое с тех пор периодически то тускнело до розового цвета, то вновь становилось красным, имеет собственную скорость — меньшую, чем скорость вращения планеты на этой широте. Скорость Красного пятна нерегулярно изменяется; иногда оно отстает на 15 минут от среднего периода вращения, а затем движется быстрее.

Сначала считали, что Красное пятно — это облако, выброшенное гигантским вулканическим извержением, позднее — участок атмосферы, окрашенный в красный цвет бромом или окислами азота, но ни одна теория не могла объяснить его длительное существование. В настоящее время полагают, что Красное пятно состоит из полутвердого вещества, возможно пористого, как пемза, и достаточно легкого, чтобы удерживаться в верхней части атмосферы Юпитера, подобно гигантскому плавающему острову. Временами более подвижное, меняющее свои очертания непрозрачное образование — Южное тропическое возмущение — догоняет и как бы обтекает Красное пятно, подтверждая представление о нем как о плавающем в облаках острове.

И, хотя поколения астрономов восхищались этими удивительными атмосферными явлениями, они не имели никакого представления о том мире, который скрыт под толстой атмосферой Юпитера.

Загадка 3. Есть ли у Юпитера твердая поверхность, пригодная для посадки корабля с командой космонавтов на борту?

Некоторые ученые высказывают предположение, что даже в случае неисправности тормозных двигателей космонавты совершат «мягкую» посадку, так как они не встретят твердой поверхности, а будут опускаться через слои газа, сжатого до полужидкого состояния. Если некий гипотетический корабль, достаточно прочный и массивный, совершит посадку на Юпитере, то он будет «тонуть» через все уплотняющиеся слои сжатых газов, похожих на сироп или болотную трясину, и наконец достигнет небольшого твердого ядра на глубине 65 000 км в центре планеты — настоящего газового гиганта.

Другие астрономы наделяют Юпитер небольшим по размерам, таким, как у нашей Земли, железо-каменным ядром, окруженным массивной оболочкой, состоящей из льда, замерзших аммиака, метана и других соединений. Выше все это переходит в жидкую фазу, образующую море глубиной 27 000 км . Между морем полужидких паров и «настоящей» атмосферой нет какой-либо четкой границы. Температура в атмосфере никогда не поднимается выше –130°C.

Эти теории были предложены задолго до проникновения человека в космос и с появлением новых идей и открытий быстро устарели. Саган в 1961 г. изложил новую, революционную теорию, согласно которой Юпитер вовсе не холодный, а имеет типичную для Земли температуру на поверхности и эта твердая поверхность, действительно, существует. Наполнив сосуд аммиаком, метаном, водородом и гелием, чтобы моделировать атмосферу Юпитера, Саган подвергал эту смесь высокому давлению и пропускал через нее ультрафиолетовые лучи. Газы проявили способность к парниковому эффекту, присущему и плотной атмосфере Венеры; температура под ним была 20°C — как в теплый весенний день на Земле.

Интенсивность облучения тщательно устанавливалась не выше той, которую имеют солнечные лучи на поверхности Юпитера, — в 25 раз меньше, чем для Земли, — и все-таки было очевидно, что прошедшая через атмосферу лучистая энергия аккумулируется и нагревает поверхность Юпитера значительно выше предела замерзания.

Эти искусно поставленные эксперименты опровергают теорию «замерзшего» Юпитера. Они свидетельствуют в пользу теплого Юпитера с морями настоящей воды, с привычной нам почвой и погодой с дождями, вспышками молний и раскатами грома.

Дальнейшие рассуждения Сагана способны поразить самое богатое воображение.

Загадка 4. А что, если Юпитер вовсе не холодный и бесплодный, а теплое царство цветущей жизни, более многообразной, чем на любой другой планете?

«Атмосфера Юпитера очень похожа на первичную атмосферу Земли, в которой появились живые организмы». Это ошеломившее астрономов заявление было сделано Саганом в 1961 г. В современной биологии принимается, что солнечные ультрафиолетовые лучи, проникавшие в первичную атмосферу Земли несколько миллиардов лет назад, вызывали химические реакции между метаном, аммиаком и свободным водородом с образованием простых органических соединений. Последние случайным образом объединялись в более сложные комбинации, до тех пор пока наконец не появились первые «живые молекулы». Случайно и вместе с тем неизбежно эволюция жизни началась.

Если допустить, продолжает Саган, что парниковый эффект обеспечивает на Юпитере характерную для Земли температуру 20°, то вполне вероятно, что подобным же образом в обширных океанах Юпитера зародилась жизнь. Он подсчитал, что существовавшие до возникновения жизни органические молекулы образовывались с огромной скоростью — около двух килограммов на квадратный километр в год. Поскольку площадь поверхности Юпитера приблизительно в 120 раз больше, чем Земли, полный вес органического раствора должен выражаться астрономическим числом. Азимов, писатель-фантаст и профессор биохимии Массачусетского университета, оценивает полную массу живых организмов в грандиозных океанах Юпитера в 1/8 массы Луны, что составляет 80 миллиардов тонн.

Но многие астрономы считают, что Юпитер холоднее, чем предполагает Саган, так что вся вода должна замерзнуть. В таком случае океаны будут состоять главным образом из аммиака NH3, ядовитого для земных организмов, а в воздухе будет недостаточно поддерживающего жизнь кислорода.

Все это отнюдь не обязательно должно сделать жизнь невозможной, и в этой связи возникает необычная астробиологическая загадка.

Загадка 5. Процветает ли на Юпитере «аммиачная» жизнь?

Эту гипотезу защищает Фирсов (Британское королевское астрономическое общество). Он утверждает, что, помимо кремниевой жизни (см. гл. III), возможен другой тип организмов, также совершенно отличный от земных видов. Подобно тому как наши организмы, основанные на углероде, используют воду и кислород, на Юпитере эти вещества могут быть заменены аммиаком и азотом.

Говоря языком химии, жидкий аммиак — прекрасный растворитель и может служить основной «биожидкостью», в полном подобии с водой. Аммиачная «кровь», богатая питательными веществами, была бы столь же эффективной, как и наша кровь. Аммиачные животные дышали бы азотом, их мышцы получали бы энергию так же, как при дыхании кислородом.

Рассматривая возможность существования животных, Фирсов полагает, что гигантский Юпитер, если он обитаем, населен, как это ни парадоксально, карликовыми видами с короткими толстыми телами и мощными ногами, которые позволяли бы выдерживать силу тяжести, почти в три раза превышающую земную. У существ размером с человека центр тяжести расположен так высоко, что они не могли бы сделать на Юпитере ни одного шага, не упав при этом. (Напротив, на планетах с низкой силой тяжести, например на Меркурии и Марсе, живые существа могут беспрепятственно достигать большого роста. Биологи принимают за аксиому странное, но довольно вероятное положение, что везде во Вселенной, где есть разумные существа, чем больше планета, тем меньше населяющие ее особи, и наоборот.)

Фирсов, Саган и другие астробиологи не настаивают на том, что на Юпитере существует жизнь. Они просто отмечают, что прежние представления, основанные на таких сомнительных данных, как чрезвычайно низкая температура, могут быть ошибочными; теплый климат и аммиачные моря могли бы сделать Юпитер убежищем жизни.

Итак, царь планет, колоссальный по размерам, возможно, окажется приютом для скрытой облаками жизни, более многообразной, чем на сотне земель. Космические зонды и экспедиции космонавтов помогут разгадать эту загадку.