5. Заблуждения и озарения учёных

5.1. Из всех разделов естествознания именно практическая астрономия изучает наиболее простые и наглядные явления, для которых сравнительно легко можно создать математическую модель (например, календарь), что и было сделано уже несколько тысячелетий назад. В то же время, как математическая дисциплина она наименее абстрактна, ибо по большей части имеет дело с реально наблюдаемыми явлениями. Например, сферическая геометрия развивалась только в рамках астрономии и связанной с ней географии.

5.2. Ксенофан считал Землю плоской, бесконечной, уходящей своими корнями в бесконечную глубину. Поэтому светила не могут обращаться вокруг Земли, а должны ежедневно рождаться и гибнуть (или удаляться в бесконечность). Для объяснения различий в видимом движении Луны и Солнца на разных широтах Ксенофан вынужден был предполагать существование целого «набора» одновременно существующих светил.

5.3. По мнению Аристотеля и Птолемея, центр Мира совпадает с центром Земли; но если бы наблюдатель оказался на Луне, то тела падали бы к центру Луны, где влияние центра Мира уже отсутствует.

5.4. Высказывание Анаксимена — это мнение учёного, обладающего весьма неполными данными об объекте исследования. Анаксимен был уверен в материальности небесных объектов. Звёзды он считал твёрдыми телами, находящимися на одинаковом расстоянии от Земли. Чтобы исключить их взаимное перемещение и падение на Землю, он считаел необходимым наличие твёрдой, но невидимой, опоры — «ледообразной» небесной сферы («Фрагменты…», 1989, с. 132).

5.5. Весьма точны высказывания Анаксагора о причине свечения Луны и её рельефе. Солнце признаётся им очень крупным раскалённым телом, что в целом также верно. Поразительно точно угадана и причина свечения Млечного Пути. Хотя рассуждения о природе звёзд и причине их разогрева довольно примитивны, но Анаксагор прав, признавая звёзды материальными телами. Наконец, признаётся возможность падения «камней с неба». Вот как об этом пишет Плиний в «Естественной истории»:

Греки сообщают, что Анаксагор, благодаря своим познаниям в астрономии предсказал, в какие дни упадёт камень с Солнца, что и произошло среди бела дня в области Фракии возле реки Эгоспотамы (камень этот показывают и по сей день: он величиной с гружёный воз и опалённого цвета), причём в те ночи на небе пылала комета. Если поверить в то, что он и впрямь это предсказал, придётся также признать, что провидческая способность Анаксагора была совершенно удивительной; сама наша способность к пониманию природы вещей окажется под угрозой и всё спутается, если допустить, что Солнце либо само камень, либо на нём когда‑либо находился камень. Однако сам факт частого падения [камней с неба] не подлежит сомнению. Один такой, небольших размеров, и по сей день заботливо сохраняется в Абидосском гимнасии; рассказывают, что его падение на материке было предсказано тем же Анаксагором.

Разумеется, даже в нашу эпоху учёным ещё не дано предсказывать падение на Землю метеоритов (хотя в недалёком будущем это представляется вполне возможным). Но при чтении приведённого выше фрагмента не может не поразить ясность, материалистичность и здравый смысл в мышлении древнегреческих философов и обывателей.

5.6. Как видим, эти сообщения не во всём согласуются между собой: материалом для твёрдого неба указан, в первом случае, воздух, во втором — вода, а в третьем — эфир. Но все три их объединяет одна мысль, вероятно, действительно принадлежащая Эмпедоклу: «мир материален и он эволюционирует». С ней вполне согласится современный учёный.

Весьма актуально также звучит сообщение о взглядах Эмпедокла, дошедшее до нас от Диогена Лаэртия. Воззрения его таковы: «элементов четыре: огонь, вода, земля и воздух, и ещё Любовь, которой они соединяются, и Распря, которой они разделяются». Как видим, присутствует не только Пятый Элемент, но и шестой.

5.7. Главное в идее Д. И. Менделеева — указание на системную, иерархическую организацию вещества. Мир представляет собой иерархию систем объектов — полагал Менделеев и даже указывал на возможность сложной структуры самих атомов. Термин атом (от греч. неделимый, неразрезаемый) Менделеев считал неудачным и предпочитал ему термин индивидуум , как предполагающий не только обособленность, но и возможность сложной внутренней структуры. Менделеев разъяснял, что слово атом значит по — гречески то же, что индивид по — латински. Слово индивид издавна и постоянно прилагают и к человеку, и к любому животному и растению. Но кто же сомневается, что животные и растения делимы?

«А потому лучше было бы назвать атомы индивидуумами, неделимыми… Индивидуум механически и геометрически делим и только в определённом реальном смысле неделим. Земля, солнце, человек, муха суть индивидуумы, хотя геометрически делимы ». Так утверждал Дмитрий Иванович в 1906 году. Разумеется, он был далёк от того, чтобы проводить прямую аналогию между объектами микро- и мегамира: приведённая цитата — лишь образная иллюстрация из книги Менделеева «Основы химии».

5.8. Газ представляет собой систему сталкивающихся корпускул, не обладающих заметными силами дальнодействия. В отличие от него, звёздный ансамбль — это система гравитационно связанных (эффект дальнодействия) не сталкивающихся тел. Однако многие механические проявления газовых и звёздных систем подобны.

5.9. Роль центральной массы в Галактике выполняет сгущение звёзд — галактическое ядро, в центре которого, по всей видимости, находится очень массивная чёрная дыра (около 2,5 млн. масс Солнца). Уже в 1948 году советские учёные получили изображение центральной части Галактики при помощи электронно — оптического преобразователя, чувствительного к инфракрасным лучам, для которых межзвёздная пыль — «завеса чёрного вещества» — не помеха.

5.10. Гюйгенс открыл Большую туманность Ориона, но суть открытия ещё долго оставалась непонятой. Позднее выяснилось, что до Гюйгенса, возможно, первым в Европе, в 1618 г. эту туманность наблюдал в телескоп швейцарский астроном Иоганн Цизат (1586–1657), но не обратил на неё должного внимания.

5.11. Речь идёт о внегалактических туманностях, или, по современной терминологии — галактиках.

5.12. Тёмные прогалы в Млечном Пути вызваны плотными облаками космической пыли, экранирующими излучение более далёких звёзд

Галактики. Одним из первых эту мысль сформулировал В. Я. Струве (1793–1864): продолжая изучение Галактики методом «звёздных черпков» Гершеля, он высказал уверенность в существовании межзвёздного поглощения света и оценил его величину в 0,5m/кпк. Лишь столетие спустя была доказана справедливость этого предположения и довольно высокая точность оценки Струве. Поглощение света стало первым свидетельством существования холодного межзвёздного вещества.

Ещё более определённое предсказание сделал «отец астрофизики» итальянец Анджело Секки (1818–1878), впервые систематически применивший спектроскоп в астрономии и давший в 1863 г. первую и довольно удачную спектральную классификацию звёзд. С помощью спектроскопа Секки установил различие между двумя типами туманностей: одни из них оказались звёздными системами, а другие — газовыми облаками. Всерьёз заинтересовавшись чёрными пустотами в Млечном Пути, которые Гершель считал «провалами в небесах», Секки настаивал на том, что это гигантские облака тёмных газов, проецирующиеся на светлый фон далёких звёзд. Однако ещё полстолетия астрономы склонны были разделять взгляды Гершеля и находили гипотезу Секки «маловероятной».

Для астрономов XX века существование межзвёздных газо-пылевых облаков стало вполне обыденной вещью и, кстати, главным препятствием при изучении далёких областей Млечного Пути. Из‑за наличия толстого слоя пыли в плоскости Галактики наблюдатель с Земли не может в оптических лучах увидеть галактическое ядро.

5.13. Число звёзд в наблюдаемой части Вселенной (Метагалактике) конечно, хотя и очень велико. Пространственная граница Метагалактики определяется моментом Большого взрыва и удалена от нас приблизительно на 13 млрд. световых лет. Однако вопрос об ограниченности объёма нашей Вселенной до сих пор остаётся открытым.

5.14. Ломоносов решил поставленную задачу небольшим (4°) наклоном главного зеркала к оси трубы. Это позволило вывести главный фокус за пределы трубы. Возникающая в такой системе кома минимальна в телескопах с большим фокусным расстоянием. Подобную схему применял и В. Гершель. В современной астрономии оптическая схема Ломоносова — Гершеля используется в солнечных телескопах.

5.15. Мысль Гераклита о том, что «космос один и тот же для всех» в наши дни можно сопоставить со свойствами однородности и изотропии Вселенной. «Вечно живой огонь», вероятно, аллегория, поскольку Гераклит полагал, что Космос попеременно возникает и снова уничтожается, чтобы возникнуть вновь. В то же время он считал огонь исходным, самым подвижным состоянием вещества, родоначальником всех прочих его форм. В этом смысле его представления близки к теории горячей Вселенной и, более того, к идеям современной инфляционной космологии.

5.16. Это высказывание В. Гершеля (1789 г.).

5.17. Кант существенно продвинулся по сравнению со своими предшественниками в формулировке и решении обеих поставленных им перед собою задач: раскрыть строение звёздной Вселенной и объяснить происхождение небесных тел и их систем. Однако полностью эти задачи не решены и по сей день, особенно проблема происхождения планетных систем.

5.18. Биологические структуры более сложны и в структурном, и в эволюционном плане, чем объекты мегамира.

5.19. Под «кристаллом небес» Бруно подразумевает бытовавшее в древние времена представление о небесных хрустальных сферах, на которых закреплены планеты и звёзды. Гелиоцентрическая система мира Коперника вдохновила Бруно отказаться от представления не только о сферах планет, но и о единой сфере неподвижных звёзд. Он представлял звёзды рассеянными в бесконечном пространстве, равноправными с Солнцем и обладающими своими планетными системами.

5.20. Бруно учился в монастырской школе, был доминиканским монахом, а позже — священником; поэтому в своём объяснении бесконечности Вселенной он, естественно, опирается на идеалистические доводы:

Существует бесконечная Вселенная, созданная бесконечным божественным могуществом. Ибо я считаю недостойным благости и могущества божества мнение, будто оно, обладая способностью создать, кроме этого мира, другой и другие бесконечные миры, создало конечный мир.

5.21. Взгляды современных учёных не столь оптимистичны, как у Джордано Бруно. Кстати, сплюснутость Солнца из‑за его медленного вращения так мала, что недоступна измерениям. Физические характеристики звёзд могут значительно отличаться от параметров Солнца. Скорее всего, не у всех звёзд есть планетные системы. Природные условия на планетах даже Солнечной системы резко различаются. В философском плане наличие внеземных цивилизаций современная наука не отрицает, но пока нет никаких фактов, доказывающих их существование. Вселенная безгранична, но может быть конечна.

5.22. Освещённость, создаваемая световым потоком Солнца через диафрагму размером с булавочное отверстие, много больше освещённости, создаваемой практически точечным источником света — звездой. Видимый угловой диаметр даже ближайших к нам и крупнейших звёзд ночного неба составляет лишь сотые доли угловой секунды. Чтобы с расстояния в несколько метров сквозь отверстие в экране можно было увидеть столь же малый участок солнечной поверхности, диаметр этого отверстия должен быть менее 1 мкм, что практически невозможно. Поэтому эксперимент Кеплера ни коим образом не подтверждает особую роль и центральное положение Солнца во Вселенной.

5.23. Галилей ещё не мог знать, что для земного наблюдателя звёзды представляются практически точечными источниками света. Кажущиеся угловые размеры звёзд определяются рассеянием света в атмосфере и в мутной среде оптических компонентов глаза. Атмосферное рассеяние очень мало: угловой диаметр изображения звезды при наблюдении на уровне моря достигает 3–5″. Для невооружённого глаза, имеющего — при наблюдении неярких объектов — разрешающую способность 100–150″, такой источник представляется точечным. Но даже при 10–кратном увеличении телескопа (Галилей говорит о 100–кратном увеличении, имея в виду площадь изображения) атмосферный диск звезды формально остаётся за пределом разрешающей способности глаза. Однако в телескоп звезда кажется более яркой за счёт большего светового потока, собираемого объективом. Поэтому рассеяние света в мутной среде глазного яблока создаёт впечатление увеличенного изображения звезды. При этом кажущееся увеличение угловых размеров звезды не имеет ничего общего с угловым увеличением протяжённых земных и небесных объектов.

5.24. Как выяснилось уже в наши дни, Тихо Браге и другие учёные в 1572 г. наблюдали вспышку сверхновой звезды в нашей Галактике. Это явление наблюдается при взрыве массивной звезды — сверхгиганта, после которого от неё остаётся лишь ядро — нейтронная звезда весьма малого размера или чёрная дыра. После того, как горячая оболочка взорвавшейся звезды рассеется и остынет, на месте взрыва невооружённым глазом уже ничего не видно. Для дальнейших наблюдений требуется мощный телескоп — оптический, радио- или рентгеновский.

Указанных в условии задачи данных вполне достаточно для определения условий видимости звезды в момент вспышки. А более точные координаты Сверхновой 1572 можно найти, например, в справочнике Куликовского, в таблице «Галактические источники радиоизлучения»: в эпоху J2000.0 радиоисточник, связанный с остатком этой Сверхновой имел координаты α=0h 25m и δ=+64,2°. Учёт прецессии за прошедшие 430 лет даёт координаты в эпоху вспышки: α=0h 03m и δ=+61,8°. Принимая широту места наблюдения равной 56°, видим, что Сверхновую 1572 г. Тихо наблюдал в верхней кульминации на высоте 84°, а в нижней — на высоте 28° над горизонтом, т. е. эта звезда, в принципе, круглые сутки была видна достаточно высоко над горизонтом. В середине ноября Кассиопея кульминирует вечером, около 20 час. Поэтому для наблюдения Сверхновой 1572 на ночном небе этот период года был чрезвычайно удобен. А в конце светового дня Кассиопея поднималась над горизонтом уже почти на 60°, что делало весьма удобным наблюдение Сверхновой и на дневном небе. В ноябре Сириус восходит около полуночи, тогда и можно было сравнить с ним блеск звезды.

Узнать условия видимости Венеры значительно сложнее: для этого проще всего использовать электронную программу — планетарий, достаточно точную, чтобы вычислять положения планет на интервалах времени в несколько столетий (для решения именно этой задачи советуем использовать программу А. Волынкина Turbo Sky v.3: в указанную дату на соответствующем месте её электронного неба действительно появляется Звезда Тихо). Установив дату «11 ноября 1572 г.» и широту Москвы, увидим, что условия видимости Венеры были превосходными: планета была почти в максимальной западной элонгации; располагаясь на угловом расстоянии в 43° от Солнца, она восходила под утро и к началу сумерек уже была на высоте около 20° над горизонтом, имея блеск около -5m. Вслед за ней восходил Меркурий (западная элонгация 20°), а ещё позже, уже в лучах Солнца — Сатурн. Яркий Юпитер кульминировал поздним вечером на высоте в 40°. Как видим, условия для изучения Новой Тихо были практически идеальными.

Роль Сверхновой 1572 г. в истории астрономии чрезвычайно велика: её появление раз и навсегда разрушило древнее заблуждение о неизменности звёздного неба, а также окончательно определило судьбу Тихо Браге как астронома, работы которого дали толчок рождению новой науки.

5.25. Максимум излучения Сириуса лежит в ультрафиолетовой области спектра, поэтому в синей области его излучение больше, чем в жёлтой и зелёной. «Дерзким» Сириус, вероятно, назван за свой блеск: это ярчайшая звезда ночного неба.

Цвет Альдебарана, определяемый его температурой (3500 К), считается в астрономии оранжевым, иногда красноватым, что соответствует цветам рубина, разновидности которого имеют цвета от розового до красного. Под «цепью» Ориона, по-видимому, надо понимать звёзды так называемого «пояса» Ориона: ζ, ε, δ. Эти звёзды голубоватые, с показателем цвета B‑V около -0,2m и звёздной величиной около 2m. Их яркость и голубой оттенок вызвали у поэта ассоциацию с алмазом, основное свойство которого — высокий показатель преломления (n=2,4).

«Арго» — это прежде существовавшее созвездие южного полушария «Корабль Арго». Сейчас это звёздное поле поделено между четырьмя созвездиями: Киль, Корма, Компас и Парус. В северных средних широтах зимой над южной частью небосвода видны частично только Компас и Корма, не содержащие ярких звёзд. Слабые звёзды глаз воспринимает ахроматическими светоприемниками — палочками, и поэтому цвет таких звёзд фиксируется как беловатый (серебристый).

5.26. Действительно, за пределом атмосферы, в космосе, звёзд видно больше, и они не мерцают (по выражению одного из путешественников «они… мертвенны»). Ночное небо выглядит темнее, чем при наблюдении с поверхности Земли, поскольку отсутствует рассеяние света и собственное свечение атмосферы. Звёзд видно больше не потому, что их яркость намного усилилась (поглощение света в атмосфере, близ зенита, составляет 25–30 %), а потому, что фон неба стал более тёмным. Рисунок созвездий, разумеется, остался тем же самым.

А вот по поводу «разноцветности» звёзд Циолковский ошибся. Наш глаз вообще плохо воспринимает цвет слабо светящихся объектов, поскольку ночное, «палочковое» зрение не чувствительно к цвету. К тому же, излучение звёзд в основном носит тепловой характер, а распределение энергии в спектре чёрного тела весьма плавное. Поэтому, скажем, фиолетовых, синих и зелёных звёзд ни в космосе, ни на Земле увидеть нельзя. Все горячие звёзды кажутся нам белыми или чуть голубоватыми; и только относительно холодные звёзды могут иметь красный или оранжевый оттенок, да и то лишь в том случае, если они достаточно яркие (см. задачу 5.25).

5.27. В 1859–1860 гг. Р. Бунзен и Г. Кирхгоф в Германии изобрели метод спектрального анализа света. С 1860 года началась история солнечной и звёздной спектроскопии (Д. Донати и А. Секки в Италии, У. Хёггинс в Англии, Г. Кирхгоф в Германии).

5.28. Во второй половине XIX века возникла астрофизика — наука о природе небесных тел и физике космоса. В наше время это основной раздел астрономии. А. Кларк: «Эта наука даёт возможность изучать здесь на Земле строение звёзд, а сущность земных явлений постигать лучше после сравнения со звёздными мирами ».

5.29. Предположение Бесселя подтвердилось: среди звёзд и остатков их эволюции оказалось довольно много слабосветящихся и даже совершенно тёмных тел (в том числе и чёрных дыр). Спутники Сириуса и Проциона — это звёзды малой светимости. Спутник Сириуса, белый карлик, был обнаружен американским оптиком А. Кларком в 1862 г. при испытании 46–см рефрактора. Спутник Проциона, тоже белый карлик, был открыт в 1896 г. Дж. М. Шеберле при наблюдении в большой рефрактор Ликской обсерватории.

5.30. Если использовать современные термины, то, очевидно, в этой дискуссии речь идёт о явлении аберрации света. За счёт движения Земли по орбите направление приходящих от Солнца лучей смещается на 20,5″.

5.31. На принципы эволюционности и единства физических законов для всей Вселенной.

5.32. Пять блуждающих звёзд — это пять известных в античное время планет: Меркурий, Венера, Марс, Юпитер и Сатурн. Наблюдаемые у них неравенства — это их петлеобразное и неравномерное движение по небесной сфере. По поводу построения теории наблюдаемых движений планет на основе сочетания только круговых равномерных движений Птолемей уже в приведённой цитате говорит, что он опирается на принцип божественного (понимай — математического) совершенства. Но в другом месте «Альмагеста» у него есть и более физическое обоснование:

Поскольку движение небесных тел не встречает никаких препятствий и происходит легче всех других движений, ему должна быть свойственна и наиболее удобоподвижная форма; для плоских фигур это круговое движение, а для пространственных — сферическое.

Хотя задача моделирования наблюдаемых движений планет при помощи комбинации некоторого числа равномерных круговых движений была впервые сформулирована в греческой астрономии ещё Платоном, никому из предшественников Птолемея не удалось достичь столь высокого совершенства в решении этой задачи. Косвенно о высокой оценке труда Птолемея свидетельствует и трансформация названия книги: первоначально «Альмагест» назывался «Мегале синтаксис», что можно перевести как «Великое построение» или как «Великое сочинение», но средневековые арабские астрономы стали употреблять название «Аль Маджисти» («Величайшее»), откуда и получился «Альмагест».

Сам Птолемей хорошо понимал и отмечал в «Альмагесте» трудности предвычисления положений планет на длительный срок, но всё же в течение полутора тысячелетий его теория служила единственным инструментом для решения этой задачи. Вероятно, сам Птолемей был бы удивлён таким долгожительством своей теории. Он писал: «Надлежит применять к небесным движениям, насколько это возможно, гипотезы простейшие; но если их недостаточно, нужно изыскивать другие, более подходящие ». Эти «другие» теории оказались востребованы лишь через много веков. Создание математической модели мира, позволяющей давать правильные положения планет на небесной сфере, считается большинством историков научным подвигом Птолемея.

Но следует заметить, что существует и другая точка зрения на работу Птолемея. Она изложена в книге современного специалиста по небесной механике Роберта Ньютона «Преступление Клавдия Птолемея» (1985) и состоит в том, что большинство наблюдательных данных было Птолемеем подделано, а основные достижения античной астрономии изложены в «Альмагесте» неполно и необъективно, в выгодном для автора этого сочинения свете.

Проделав детальный анализ содержания «Альмагеста» (который он предпочитает именовать «Синтаксисом») и сопоставив данные Птолемея с результатами современных расчётов движения планет, Роберт Ньютон пришёл к следующим выводам:

Все собственные наблюдения Птолемея, которыми он пользуется в «Синтаксисе», насколько их можно было проверить, оказались подделкой. Многие наблюдения, приписанные другим астрономам, также часть обмана, совершённого Птолемеем. Его работа изобилует теоретическими ошибками и недостатком понимания… Его модели для Луны и Меркурия противоречат элементарным наблюдениям и должны рассматриваться как неудачные. Само существование «Синтаксиса» привело к тому, что для нас потеряны многие подлинные труды греческих астрономов. А вместо этого мы получили в наследство лишь одну модель, да и то ещё вопрос, принадлежит ли этот вклад в астрономию самому Птолемею. Речь идёт о модели экванта, использовавшейся для Венеры и внешних планет. Птолемей существенно уменьшает её значение не совсем правильным использованием.

Становится ясно, что никакое утверждение Птолемея не может быть принято, если только оно не подтверждено авторами, полностью независимыми от Птолемея. Все исследования, в истории ли, в астрономии ли, основанные на «Синтаксисе», надо проделать заново.

Я не знаю, что могут подумать другие, но для меня существует лишь одна окончательная оценка: «Синтаксис» нанёс астрономии больше вреда, чем любая другая когда‑либо написанная работа, и было бы намного лучше для астрономии, если бы этой книги вообще не существовало.

Таким образом, величайшим астрономом античности Птолемей не является, но он является ещё более необычной фигурой: он самый удачливый обманщик в истории науки.

Можно по-разному относиться к мнению Роберта Ньютона, но очевидно одно: история науки — это живое дело, в котором возможны попытки революционного пересмотра устоявшихся оценок. Правда, не всегда эти «революции в истории» совершаются на достаточно высоком профессиональном уровне, и поэтому, естественно, они не находят поддержку у специалистов. Так было и в прошлом: например, Копернику приходилось защищать Птолемея (!) от необоснованных нападок и критики, опубликованных в арабских трактатах (Идельсон, 1947, с. 11). А современные примеры неудавшихся научных революций дают работы академиков Н. А. Морозова и А. Т. Фоменко (см.: «Антифоменко», 2000; «Астрономия против …», 2001).

5.33. Эта цитата из первой научной работы Н. Коперника, которая историками науки условно названа «Малым комментарием». Она была завершена около 1515 г., но не была напечатана автором и ходила в списках. Первое сообщение о существовании этой работы было сделано датским астрономом Тихо Браге, который получил её в 1575 г. В «Малом комментарии» впервые излагается общая схема гелиоцентрической теории. Как видно из приведённого текста, в модели мира Коперника сохранены эпициклы, хотя по сравнению с моделью Птолемея их количество существенно сокращено.

5.34. Прежде всего, сам вопрос Сенеки говорит нам о том, что накануне эпохи Птолемея в среде интеллектуальной элиты свободно обсуждалась проблема движения Земли. Для Сенеки, философа- стоика, проповедавшего безразличие к внешним обстоятельствам жизни (к богатству и бедности, к славе и ненависти, к боли и смерти, и т. п.) вопрос о движении Земли имел скорее нравственное, чем физическое значение. Разумеется, Сенеку нельзя упрекнуть в отсутствии естественнонаучной любознательности: среди его многочисленных произведений были и «Исследования о природе» (Naturales quaestiones), в семи книгах, посвященные грому и молнии, снегу, граду, дождю, землетрясениям, кометам и т. п. До тех пор, пока Запад не познакомился с Аристотелем, «Исследования о природе» Сенеки использовались в качестве главного источника информации по натуральной истории. Однако стоики рассматривали небесные и вообще природные феномены как непосредственное доказательство того, что Вселенной управляет разумное провидение («обрекла ли судьба нашу Землю…») . Поэтому вопрос о движении Земли понимался стоиками не как физическая проблема системы отсчёта, а как вопрос об отношении провидения к Человеку: «заставили ли боги все небесные тела двигаться вокруг нас или же мы сами около них вращаемся?». Создан ли Человек как центр Вселенной или как равноправная её часть — вот основной смысл вопроса Сенеки.

5.35. Подробные опыты с качающимся маятником провёл в январе 1851 г. французский физик — экспериментатор Жан Фуко, в честь которого прибор был назван маятником Фуко . Тогда же он объяснил наблюдаемое явление суточным вращением Земли. Через три месяца учёный продемонстрировал свой опыт с маятником длиной 67 м. Лиувилль показал, что на полюсах Земли угловая скорость поворота плоскости качания маятника наибольшая, а на экваторе эта плоскость остаётся неизменной.

5.36. Основная идея Плутарха — гениальная догадка, но исследователи считают, что под «огнём» совсем необязательно подразумевалось Солнце.

5.37. Описана гелиоцентрическая модель мира, предложенная древнегреческим астрономом Аристархом Самосским (ок. 310–230 гг. до н. э.). Цитата взята из труда Архимеда «Исчисление песчинок [во Вселенной]», написанного им в 216 г. до н. э.

5.38. В средние века более точные наблюдения планет привели к необходимости усложнения системы мира Птолемея. Для каждой планеты были введены дополнительные эпициклы, причём центр каждого последующего двигался по окружности предыдущего, и только по последнему эпициклу двигалась сама планета. Модель мира стала настолько громоздкой, что у многих людей возникли сомнения в её правильности.

5.39. Лихтенберг хотел этим сказать, что после создания гелиоцентрической системы мира астрономия стала быстро развиваться. В историческом плане это именно так. Но вот вопрос: благодаря чему стала быстро развиваться астрономия — благодаря новой концепции или изобретённому в эти же годы телескопу? И было ли случайным это совпадение? И не было ли у гелиоцентризма и телескопостроения общей причины для быстрого прогресса?

5.40. Положения 4, 5, 6 и 7 модели мира Коперника и сегодня можно считать вполне точными; но положения 1, 2 и 3 со временем потребовали ревизии.

5.41. Эти рассуждения Коперника, в целом довольно наивные, основываются на обобщении житейского опыта и содержат некоторые интуитивные находки. Опыт нам подсказывает, что «природные», длительно существующие физические объекты и системы находятся в состоянии равновесия и обладают более высокой устойчивостью, чем короткоживущие искусственные создания. Под действием внешних сил система может быть выведена из равновесия (ускорение) и разрушена (деформация). Коперник верно оценил, что при вращении двух объектов разного размера (Земля и небеса) с одинаковым периодом большие нагрузки испытывает объект большего размера.

5.42. Прежде всего Коперник имеет в виду особенности наблюдаемого петлеобразного движения планет: систематическое уменьшение размера петель и увеличение числа петель на каждом обороте планеты в порядке их расположения от Марса к Сатурну. Но орбиты планет Коперник представляет круговыми, в действительности же они эллиптические.

5.43. Историки науки полагают, что А. Осиандер в своём предисловии намеренно принизил значимость системы мира Н. Коперника и свёл её к ещё одному методу расчёта положений светил на небе. Очевидно, что приведённые слова Осиандера могли бы характеризовать и модель мира Птолемея.

5.44. Эта попытка реформы календаря была предпринята египетским царём Птолемеем III Эвергетом. Календарь совпадает с тем, который был введён Юлием Цезарем в 46 г. до н. э. и теперь называется юлианским.

5.45. Шведский учёный Сванте Аррениус (1859–1927) в книге «Представления о мироздании на протяжении веков» приводит следующее высказывание самого Н. Коперника:

После того, как я долго размышлял о сомнительности математических учений относительно исчисленных круговых движений сфер, мне было тяжело сознавать, что философы, заботливо исследовавшие мельчайшие подробности этих круговых движений, не нашли надёжных оснований для движения мировой машины, которая всё же была построена ради нас лучшим мастером, сообразовавшимся с законами природы. Поэтому я не пожалел труда вновь перечесть книги всех имевшихся у меня философов, чтобы отыскать, не высказал ли кто- нибудь мнение о том, что небесные тела имеют другие движения, чем принятые теми, кто обучает в школах математическим наукам. Тогда я нашёл у Цицерона, что Ницетус (Гицет) полагал, будто Земля движется. Затем я нашёл у Плутарха, что и другие держались того же мнения. Для общего сведения я здесь приведу его слова: «Некоторые думают, что Земля движется. Так пифагореец Филолай говорит:,Земля движется по наклонному кругу, точно так же, как Солнце и Луна“. Пифагорейцы Гераклид из Понта и Экфант полагают, что Земля вращается, правда, не непрерывно, а во время между заходом и восходом Солнца, наподобие колеса вокруг своей центральной точки». Побуждаемый таким примером, и я стал думать о подвижности Земли, и хотя это могло показаться нелепым, я всё же не бросил своей мысли, так как знал, что другим до меня была дана свобода признавать любые круговращения в явлениях небесных светил.

5.46. На самом деле устройство Солнечной системы в модели мира Коперника является лишь немного менее сложным, чем у Птолемея. Поставив в центр мира Солнце, что впервые было предложено ещё Аристархом Самосским, Коперник затем последовательно усложнял свою систему, вводя эпициклы и смещая центры окружностей- деферентов относительно центра Солнца. В окончательном варианте модель мира Коперника насчитывала 48 окружностей.

5.47. Ответ Галилея был очень прост: «оттого, что глаза у вас слабы; возьмите трубу и увидите».

5.48. Идеологи церкви далеко не сразу поняли революционную суть учения Коперника. Отчасти этому способствовало предисловие к книге Коперника, написанное лютеранским богословом Осиандером (см. задачу 5.43). Но со временем «подрывная» роль книги Коперника становилась всё более очевидной.

5.49. В своём «Отречении» Галилей три раза подтвердил своё мнение относительности правильности гелиоцентрического учения. Молва также утверждает, что после отречения он сказал: «А всё‑таки она вертится!». Оказавшись после суда под надзором инквизиции, он продолжал научную работу, а свои труды издавал в других, протестантских странах.

5.50. Речь в письме Кеплера идёт о построении из множества разрозненных наблюдений единой математической модели планетных движений. «Архитектором» этого величественного «сооружения» стал сотрудник и преемник Тихо Браге — сам Кеплер, создавший законы планетных движений.

5.51. В качестве планетных орбит Кеплер опробовал различные замкнутые кривые: эксцентрик (окружность с нецентральным положением Солнца); эллипс с Солнцем, помещённым в центре; различные виды овалов. В конце изысканий он снова обращается к эллипсу, но с Солнцем, помещённым в одном из фокусов.

5.52. Жизнь и творчество Кеплера пришлись на пограничную эпоху между средневековой и современной наукой. Поэтому многие его взгляды были двусмысленными, обременёнными мистикой чисел и архаичными понятиями схоластики: соответствие, симпатия, и т. п. Для Кеплера критериями справедливости научных теорий часто служили абстрактно — математические понятия: гармония, прогрессия, и т. п. Его увлечение астрологией также имеет двусмысленный характер: с одной стороны, он вполне искренне искал числовые соответствия между небесными и земными явлениями, с другой — занимался составлением гороскопов из вполне материальных побуждений, поскольку именно это находило спрос у богатых и властных людей. Но и здесь проявились незаурядные качества Кеплера как настоящего учёного: он не мог бездумно «гнать халтуру», а пытался проанализировать и улучшить прогностические возможности астрологии. В этом смысле и следует понимать его приведённые в задаче слова.

C годами Кеплер окончательно разочаровался в астрологии. Зарабатывая свой скудный хлеб как астролог, Кеплер довольно презрительно отзывался об этом ремесле: «Астрология есть такая вещь, на которую не стоит тратить времени, но люди в своём невежестве думают, что ей должен заниматься математик ». Ярмарочное звездочтение было ему не по душе. И всё же в своём поиске мировой гармонии и движущих сил природы Кеплер считал неверным отказ от наблюдений и сопоставлений, накопленных древней наукой. В одном из своих сочинений он предостерегал исследователей, «чтобы они при легкомысленном отбрасывании звездословного суеверия не выбросили ребёнка вместе с водой из ванны ». До наших дней продолжается анализ предсказательных возможностей астрологии. Пока никакого «ребёнка» в этой «ванне» не обнаружено — лишь мутная вода.

5.53. Переводчиком книги Ш. Бонне был малоизвестный в то время немецкий профессор физики Иоганн Даниель Тициус фон Виттенберг (1729–1796). Он вставил в текст книги описание обнаруженной им закономерности планетных расстояний без указания своего авторства. И только во втором немецком издании Иоганн Тициус дал свой закон как примечание переводчика. По его мнению, расстояние в 28 единиц (2,8 а.е.) «принадлежит ещё не открытым спутникам Марса». В 1772 г. немецкий астроном Иоганн Элерт Боде (1747–1826), прочитав «Созерцание природы» и изумившись, с какой точностью правило Тициуса описывает истинные расстояния планет от Солнца, привёл его в своей книге «Руководство по изучению звёздного неба», забыв при этом сослаться на автора идеи. Правда, в более поздних изданиях своей книги Боде сделал это (Ньето, 1976, с. 28). В отличие от Тициуса, Боде предположил, что на расстоянии в 2,8 а.е. движется неизвестная «большая планета» и даже, используя закон Кеплера, указал её орбитальный период в 4,5 года.

Иоганн Боде активно пропагандировал правило планетных расстояний. После того, как были открыты Уран (1781 г.) и Церера (1801 г.), прекрасно занявшие свои места согласно этому правилу, оно стало очень популярным и оказалось связано лишь с именем Боде. До недавнего времени правило планетных расстояний именовалось в западных книгах не иначе как «закон Боде». Но в последние десятилетия историческая справедливость восстанавливается, и это правило всё чаще именуют законом Тициуса — Боде.

5.54. Эти слова принадлежат Иоганну Кеплеру. Сходные идеи высказывал и его современник — английский учёный В. Гильберт (1600 г.).

5.55. Исаак Ньютон (1643–1727), английский физик, астроном, математик, основоположник небесной механики, позволившей на основе закона всемирного тяготения определить движение в пространстве тел Солнечной системы. Он открыл дисперсию света, изобрёл телескоп — рефлектор, оказал огромное влияние на развитие астрономии и астрофизики.

5.56. Приведена цитата из работы Роберта Гука «Попытка доказать движение Земли на основе наблюдений» (1674 г.). Гук был замечательным физиком — экспериментатором и интуитивно предполагал существование многих явлений природы и законов физики задолго до их открытия. Например, ещё до Ньютона Гук пришёл к правильному выводу о зависимости силы тяготения от расстояния (1/R 2 ), но не развил эту идею (см.: Боголюбов, 1984).

5.57. Лагранж отмечает более высокую значимость трудов Галилея в области механики по сравнению с его астрономическими открытиями. Однако громадное значение астрономических открытий Галилея не подлежит сомнению. Первые в мире астрономические оптические наблюдения и правильная их интерпретация позволили ему заложить основу современной астрофизики. В исследовании мегамира Галилей фактически продвинулся намного дальше, чем в изучении макромира (механика). Современная астрофизика ведёт своё начало от Галилея.

К решению задачи 5.60. Метод определения высоты атмосферы по высоте сумеречного сегмента.

5.58. Системы, описанные решением Лагранжа, встречаются в природе. Так, астероиды — троянцы движутся по орбите Юпитера двумя группами. Первая группа находится впереди Юпитера на 60°, а вторая группа — настолько же позади. Таким образом, каждая группа вместе с Юпитером и Солнцем, образует устойчивый лагранжев треугольник.

5.59. Ловелл, вслед за Скиапарелли, наблюдал Меркурий днём.

В условиях горной обсерватории это имеет смысл, поскольку ослабление света при большой угловой высоте небесного объекта минимально, а фон неба не очень ярок.

При этом можно исследовать планету не только в периоды наибольших элонгаций, но и на малом угловом удалении от Солнца, когда в календарях указано, что Меркурий невидим на фоне ночного неба.

5.60. Метод определения высоты атмосферы очевиден из приведённого рисунка.

Если не учитывать атмосферную рефракцию и понимать слова Лакайля так, что в указанный момент дуга сумеречного сегмента неба скрылась за горизонтом, то оценка толщины атмосферы с использованием наблюдений Лакайля составляет около 70 км. В рамках метода Кеплера атмосфера считалась однородной и не учитывалось многократное рассеяние солнечного света. По современным данным, толщина нижнего слоя атмосферы — тропосферы, где содержится 80% массы воздуха, составляет около 10–12 км, хотя следы газовой оболочки Земли обнаруживаются и на высотах более 2000 км. В техническом смысле границей атмосферы считают высоты от 80 до 120 км. В целом оценку Лакайля можно считать вполне приемлемой.

5.61. Некоторые динамические параметры — диаметр, масса и, как результат, ускорение свободного падения на поверхности — у Земли значительно ближе к аналогичным параметрам Венеры, чем Марса. Однако период суточного вращения, наклонение оси вращения к плоскости орбиты и, следовательно, характер смены времён года у Земли практически такие же, как у Марса. Этому способствует относительное сходство их атмосфер: высокая прозрачность и близость средних температур. Поэтому современные астрономы, как и В. Гершель, считают, что условия на поверхности Земли ближе всего к условиям Марса. Прежде всего это касается возможности существования воды в трёх фазах — твёрдой, жидкой и газообразной.

5.62. Скиапарелли пришёл к выводу, что наблюдаемые белые пятна, видимые на краю марсианского диска, — это полярные шапки планеты. Он оказался прав: современные исследователи установили, что полярные шапки Марса состоят из твёрдой углекислоты с примесью водяного льда. Полярные шапки всегда видны близ края видимого диска Марса, поскольку ось вращения планеты слабо наклонена (25°) к её орбитальной плоскости, которая почти совпадает с плоскостью эклиптики (наклонение 2°), в которой, в свою очередь, располагается земной наблюдатель.

5.63. Тёмные пространства на Марсе никогда не давали солнечных бликов, что могло бы быть, если бы эти участки были покрыты водой. Также выяснено, что отражательная способность различных областей Марса не связана с их рельефом.

5.64. Наводнений на Марсе нет, так как там нет открытых водных пространств. То, что с Земли представлялось каналами, в действительности оказалось оптической иллюзией: совокупностью мелких кратеров, трещин, уступов и т. д. Правда, причина их линейного расположения до сих пор не ясна. «Таяние» снегов преимущественно означает возгонку углекислоты. Считается, что потемнение околополярных районов в весеннее время связано с перемещением по его поверхности песчаных масс. Но и это ещё не до конца ясно.

5.65. Взгляды современных учёных, основанные не только на наземных, но и на космических наблюдениях, а также на исследованиях, проведённых непосредственно на поверхности Марса, стали более пессимистическими. На планете не обнаружены не только разумные, но пока даже примитивные формы жизни.

5.66. Орбита объекта, открытого В. Гершелем, оказалась круговой околосолнечной, откуда был сделан вывод, что открытый объект — планета, позднее названная Ураном. Кометы на больших расстояниях от Солнца и Земли имеют вид диска, что делает их похожими на планеты.

5.67. Труд Кеплера, из которого взята цитата, называется «Сон, или посмертное сочинение об астрономии Луны». Древнееврейское слово «Lebana» означает «Луна».

5.68. Очевидно, что проницательность и интуиция есть необходимые качества учёного. Кроме этого, учёный должен обладать большими познаниями и глубоко проникать в избранную тему исследования. Только тогда может произойти озарение, и состоится научное открытие. Кажущаяся лёгкость научного творчества, например, открытие на прогулке или даже во сне — это результат длительного и напряжённого обдумывания задачи, когда мозг не может оставить эту работу даже во время физического отдыха учёного.

В то же время, первым обнаружить новое явление или новый астрономический объект способен и просто любознательный человек, не предпринимающий систематического научного поиска. Не раз так открывали кометы и новые звёзды. Вот два характерных и близких нам примера такого рода открытий. Первый из них описан профессором С. П. Глазенапом (1909, с. 120):

В 1901 году, 8 февраля по старому стилю, в созвездии Персея заблистала новая звезда, открытая молодым гимназистом пятой Киевской гимназии Андреем Борисяком, а несколькими часами позднее — Андерсоном в Эдинбурге. Борисяк и Андерсон заметили новую звезду 8 февраля, когда она уже достигла значительного блеска и бросалась в глаза. До 11 февраля 1901 г. Новая Персея увеличивалась в своём блеске, а с этого дня начала блекнуть; уменьшение блеска шло очень быстро: в марте она уже была четвёртой величины, в апреле — шестой величины и находилась на пределе зрения. В конце 1902 г. она была девятой величины.

Молодой любитель астрономии А. Борисяк удостоился Высочайшего поощрения: Его Величество Государь Император Николай Александрович милостиво подарил Борисяку прекрасный телескоп работы Цейса.

К сказанному профессором Глазенапом следует добавить, что Новая Персея 1901 г. (N Per 1901, или GK Per) оказалась уникальным объектом. Во — первых, это была одна из ярчайших новых прошедшего столетия — в максимуме её блеск достиг нулевой величины; лишь новая V603 Aql 1918 блестела на величину ярче. Во — вторых, многие годы после вспышки Новой Персея астрономы наблюдали расширяющуюся вокруг неё газовую оболочку — остаток взрыва звезды. Наконец, это единственная новая, у которой многие десятилетия наблюдался эффект светового эха: вспышка звезды осветила окружающее её межзвёздное вещество, и эта освещённая область со скоростью света расширялась, подобно сброшенной оболочке.

Так киевский гимназист Борисяк оказал услугу науке. А вот вторая подобная история, случившаяся 29 августа 1975 г. в Крымской астрофизической обсерватории АН СССР и соседствующей с ней обсерватории МГУ. Именно там в это время, вместе с десятками профессиональных астрономов, проводил свои наблюдения и студент — дипломник МГУ Сергей Шугаров.

А. Борисяк, открывший Новую Персея. 1901 г.

Будучи со школьных лет фанатичным любителем астрономии, Сергей прекрасно знал звёздное небо. Поэтому, направляясь к башне телескопа и окидывая по привычке взором звёздное небо, он сразу обнаружил «лишнюю» звезду в Лебеде и быстро оповестил об этом сотрудников двух обсерваторий. Незамедлительно были начаты наблюдения всеми доступными средствами и отправлена телеграмма в международный центр астрономических открытий, который разослал её во все обсерватории мира. В результате удалось подробно изучить одну из самых интересных новых в истории астрономии — Новую Лебедя (V1500° Cyg), уникально быструю по скорости нарастания и спадания блеска: невооружённым глазом она была видна всего несколько ночей.

Позже некоторые маститые астрономы Крыма вспоминали, что в тот вечер созвездие Лебедя им тоже показалось каким‑то необычным, но за суетой дел они не осознали истинной причины этого. В результате открытие досталось студенту. Правда, телескоп Цейса ему за это не подарили, но весть об открытии сыграла немалую роль в его судьбе: несмотря на весьма умеренную успеваемость студента по теоретическим предметам, ректор университета своим решением оставил «открывателя новых звёзд» для работы в МГУ и не ошибся. Сегодня Сергей Юрьевич Шугаров — один из ведущих специалистов по изучению переменных звёзд. Не заставила себя ждать и слава: побывавший в те дни на Крымской обсерватории известный поэт Андрей Вознесенский был поражён открытием студента и написал стихотворение:

Новая Лебедя

Звезда народилась в созвездии Лебедя —

такое проспать!

Явилась стажёру без роду и племени

«Новая Лебедя-75».

Наседкой сидят корифеи на яйцах,

в тулупах высиживая звезду.

Она ж вылупляется и является

совсем непристойному свистуну.

Ты в выборе сбрендила.Новая Лебедя!

Египетский свет на себе задержав,

бесстыдно, при всечеловеческой челяди

ему пожелала принадлежать.

Она откровенностью будоражила,

сменила лебяжьего вожака,

все лебеди — белые, эта — оранжева,

обворожительно ворожа,

дарила избраннику свет и богатства

все три триумфальные месяца. Но —

погасла!..

Как будто сколупленное домино.

«Прощай, моя муза, прощай, моя Новая Лебедя!

Растёт неизвестность из чёрной дыры.

Меня научила себя забывать и ослепнуть.

Русалка отправлена на костры.

Опять в неизвестность окно отпираю.

Ты — Новая Лебедь, не быть тебе старой…

Из кружки полейте на руки Пилату.

Прощай, моя флейта!

Прощай, моя лживая слава.

Ты мне надоела. Ступай к аспиранту!».

Студент МГУ Сергей Шугаров, открывший Новую Лебедя 1975 г., на фоне башни 2,6–метрового рефлектора им. Г. А. Шайна Крымской астрофизической обсерватории.

Стихотворение это было опубликовано в самом популярном в те годы журнале «Юность» с тиражом в 2,7 млн. экз. и принесло студенту Шугарову всесоюзную славу (хотя и не понравилось самому «непристойному свистуну», поскольку в комментарии к стихотворению поэт перепутал как дату открытия, так и фамилию первооткрывателя). Кстати, упомянутый в последней строчке аспирант — также фигура реальная: он был в момент вспышки звезды в обсерватории, видел её, но, озабоченный аспирантскими проблемами, не обратил внимания. Ныне он известный профессор.

Итак, два юных любителя науки — гимназист и студент — не достигнув ещё статуса учёного и не просиживая штаны над сложными проблемами, смогли сделать полноценные и важные для науки открытия. Может быть именно это и имел в виду Аристотель, говоря о «проницательности» учёного?

5.69. Приведённое высказывание Леонардо можно толковать так: он считает положение Солнца и Луны во Вселенной равноценными, а значит, ни тот, ни другой космические объекты не могут служить центром мира. В другом месте учёный утверждает, что Земля не находится «ни в центре солнечной орбиты, ни в центре Вселенной». Следует заметить, что Леонардо умер до появления труда Коперника.

5.70. Главный аргумент Галилея в пользу шарообразности Луны — форма терминатора:

Луна и Земля сходны, конечно, по форме, которая, несомненно, шарообразна, как это неизбежно следует из того, что диск Луны виден совершенно круглым, и из того, как она воспринимает свет Солнца. Если бы поверхность её была плоской, то вся она одновременно одевалась бы светом, а потом равным образом в одно и то же мгновение вся лишалась бы света, но не освещались бы сперва те её части, которые обращены к Солнцу, а за ними постепенно и все следующие, так что, только достигнув противостояния, и не раньше, весь её видимый диск оказывается освещённым; и обратно, совершенно противоположное этому происходило бы, если бы её видимая поверхность была вогнута, а именно: освещение начиналось бы с частей, противоположных Солнцу.

5.71. Гаусс обращает внимание на ограниченность нашего знания; современные естествоиспытатели формулируют это положение так: «Всё, что не запрещено [фундаментальными законами], то разрешено». В связи с этим учёные предполагают, что жизнь может иметь различные биохимические основания и сильно варьировать свою форму в зависимости от внешних условий, по Гауссу — быть «иначе организованной». Пример последних лет: глубоководные гидротермальные сообщества — почти замкнутые оригинальные биосферы в миниатюре. Уверенность Гаусса в наличии и многообразии жизни во Вселенной сегодня разделяется многими учёными.

5.72. Если высота Луны и Солнца над горизонтом одинакова, то атмосферное поглощение света, падающего на гору и приходящего от Луны, также будет одинаковым. Это понимал и сам Дж. Гершель, который далее в цитированном отрывке пишет: «Солнце и Луна находились на одинаковой высоте, в атмосфере не было ни облаков, ни паров, и последняя действовала одинаково на оба светила ».

По современным данным, Луна и целый ряд других спутников планет имеют низкую отражательную способность. В визуальных лучах альбедо материков Луны составляет около 0,09, лунных морей — чуть более 0,04. Опыт Гершеля, демонстрирующий весьма низкое альбедо лунной поверхности, можно повторить, если сравнивать яркость почти полной Луны и белой стены, освещённой лучами заходящего Солнца.

5.73. Под «философами» раньше понимали учёных вообще, и астрономов — в частности. Лучше всего рельеф Луны виден в то время, когда тени от гор и кратеров наибольшие, что имеет место во время первой и последней четвертей близ терминатора. Вывод, сделанный Галилеем, возможен только при наблюдениях в телескоп.

5.74. В настоящее время доказано, что лунные кратеры возникли в результате ударного взаимодействия с Луной метеоритов разного размера.

5.75. Представление о разумных жителях Луны — селенитах — было распространено в средние века, когда ещё не знали о неблагоприятных для жизни условиях на поверхности нашего спутника. Отражающая способность поверхности Земли из‑за облаков, снега и светлых грунтов примерно на порядок превышает альбедо поверхности Луны. В сочетании с большим угловым диаметром диска Земли на небе Луны это даёт значительно большую освещённость на Луне от Земли, чем на Земле от Луны при аналогичных фазах. Из‑за равенства периода обращения Луны вокруг Земли и периода вращения Луны вокруг собственной оси Земля почти неподвижна на лунном небе. Однако из‑заоптических либраций Луны Земля в течение месяца описывает на небе нашего спутника небольшой эллипс. Период вращения Земли для лунного наблюдателя (24h50m) определяется как суточным вращением Земли относительно звёзд (23h 56m), так и обращением Луны вокруг Земли (27,32 сут.).

5.76. Плотность горных пород на Луне не превышает плотности вещества гор на Земле. Поверхность Луны покрыта толстым слоем сыпучего материала — реголита. Этот вывод был сделан уже современными учёными из астрофизических наблюдений, и он был подтверждён контактными исследованиями лунной поверхности. Горы на Луне, особенно кратеры, не являются особенно крутыми. Эффект крутизны гор возникает при наблюдениях рельефа вблизи терминатора. Посередине крупных кратеров, действительно, имеются центральные горы, а вещество внутри больших кратеров обычно тёмное.

5.77. Пылинки, находящиеся в воздухе, опускаются медленно, особенно мелкие, так как на них, кроме силы притяжения, действует сила сопротивления среды (сила Стокса), направленная вверх. Медленно опускающийся космический корабль садится на струе газа, вырывающегося из сопла реактивного двигателя. Скорость истечения газа должна быть велика, чтобы создать достаточный импульс посадочному отсеку. Газ, ударившись о поверхность Луны, придал частицам реголита большую скорость. Низкие траектории пылевых частиц возникли при сдувании пыли с поверхности камней, которыми был усеян район посадки. Дальность полёта частиц пыли из‑за малого ускорения свободного падения и отсутствия сопротивления среды была существенно больше, чем в условиях Земли.

5.78. При ходьбе скорость перемещения определяется амплитудой и частотой (ν) свободных колебаний ног как физических маятников при данном значении ускорения свободного падения (g). Для шагов умеренной амплитуды (линейные колебания маятника) эта зависимость хорошо известна: ν~g½. А поскольку ускорение свободного падения на Луне в шесть раз меньше, чем на Земле, то и скорость ходьбы у космонавтов была в 2,5 раза меньше их скорости на Земле при прочих равных условиях. Напротив, при прыжках дальность полёта должна быть в 6 раз больше, чем на Земле, но реально скорость передвижения таким методом не достигала максимального теоретического значения из‑за того, что движение космонавта во время прыжков стесняли скафандр и неуверенность, связанная с незнакомой обстановкой.

5.79. О неизвестных в то время спутниках Марса написал в своём фантастическом произведении «Путешествия Гулливера» (1726 г.) английский писатель Джонатан Свифт. О них же упоминает и французский философ Вольтер в своём произведении «Микромегас» (1752 г.). Оба автора, вероятно, основывались на идеях Кеплера, который предполагал наличие у Марса двух спутников, исходя из возможной пропорции: у Земли один спутник, у Юпитера — четыре (известных в то время).

Указанные Свифтом периоды обращений спутников Марса оказались близки к истине, так как Фобос обращается вокруг Марса за 7,65 часов, а Деймос за 30,3 часов. Но действительные ареоцентрические расстояния спутников оказались заметно меньше: Фобос удалён от центра планеты на 1,4 её диаметра, а Деймос — на 3,5. Московский астроном И. Ф. Полак (1939) считал, что Свифт, по всей вероятности, взял для расстояний предполагаемых спутников Марса округлённые расстояния I и II спутников Юпитера, которые равны 3,0 и 4,7 диаметра планеты (Юпитера, не Марса), а периоды их обращения, составляющие 42 часа и 85 часов, уменьшил в 4 раза.

5.80. Это были интуитивные соображения, основанные на принципе пропорциональности (см. задачу 5.79).

5.81. Наши современники уже давно привыкли к движению искусственных спутников Земли, которые перемещаются по земному небосводу так же, как Фобос на небе Марса: они обычно восходят на западе и заходят на востоке. Это свойство всех искусственных спутников, движущихся по орбитам в направлении вращения Земли (а таких спутников абсолютное большинство) на высоте меньшей, чем высота геостационарной орбиты (а только такие спутники и видны невооружённым глазом).

5.82. Слово «если» в цитате, скорее всего, свидетельствует о том, что затмения в те далёкие времена предсказывать не умели. Приведённая запись есть не что иное, как руководство к наблюдениям, во время которых полагается фиксировать все обстоятельства астрономического явления. Накопленные данные использовались для попыток прогноза будущих явлений. Отсюда берут начало как астрономия, так и астрология.

5.83. Предсказание солнечных затмений для определённого места на поверхности Земли представляет сложную задачу (вообще, теория движения Луны — одна из самых сложных задач небесной механики). Если рассматривать историю про астрономов Хи и Хо не как легенду, а как описание реальных событий, то совершенно очевидно, что пострадали они незаслуженно: причиной неверного прогноза было не пьянство (настоящие астрономы не пьют!), а недостаточно высокий уровень небесной механики в Древнем Китае, равно как и в других странах в ту далёкую эпоху.

5.84. Галлей наблюдал внутреннюю корону Солнца. Полной уверенности в принадлежности наблюдаемой «атмосферы» Луне у Галлея не было. В качестве второго возможного варианта происхождения явления он рассматривал Солнце.

5.85. Несмотря на неудачные условия наблюдения, Юнг подметил интересное явление. Причиной неполной темноты в момент полной фазы солнечного затмения главным образом является рассеяние солнечного света в земной атмосфере: свет из областей полутени проникает в область тени, поскольку её размер (около 200 км) сравним с толщиной земной атмосферы. Дополнительными источниками света служат также свечение солнечной короны, пепельный свет Луны и свечение ночного неба: суммарный свет звёзд, межзвёздного и межпланетного вещества, а также собственное свечение земной атмосферы.

5.86. Впервые наблюдавшийся Юнгом «спектр вспышки», как назвал это явление английский астроном Норман Локьер (1836–1920) — это спектр излучения солнечной хромосферы, который удаётся заметить лишь во время полных солнечных затмений благодаря тому, что Луна во время полной фазы затмения закрывает собой яркие слои фотосферы. В спектре вспышки даже с помощью бесщелевых спектрографов можно наблюдать большое количество хромосферных эмиссионных линий. Движение края Луны, закрывающего хромосферу, позволяет определить изменение с высотой хромосферной эмиссии с лучшим пространственным разрешением, чем это возможно с помощью самых совершенных изображений. Уже сам Юнг после первого наблюдения указал, что «слой этот имеет в толщину, по — видимому, лишь несколько менее 1600 километров, и движение Луны очень скоро скрывает его ».

Далее Юнг пишет:

«Наблюдение, сделанное автором в 1870 году и описанное выше, получило блестящее подтверждение со стороны фотографии во время полного затмения 1896 года. Шэклтон, фотограф английской экспедиции на станции Новая Земля (единственная экспедиция, которая не была расстроена дурной погодой) получил в критический момент мгновенный фотографический снимок при помощи «призматической камеры“. Это просто камера с двумя большими призмами впереди её оптического стекла. Никакого коллиматора здесь не употребляется. Это фотографический, спектроскоп без щели“.

Когда луна всё более и более надвигается на солнце, она оставляет незакрытым крайне узкий серп. Серп этот сам по себе действует подобно щели обыкновенного спектроскопа. Фотографические снимки, полученные с таким инструментом непосредственно перед полной фазой затмения, совершенно похожи на обыкновенный солнечный спектр. Отличие заключается лишь в том, что тёмные фраунгоферовы линии заменяются тёмными серпами. Это, так сказать, негативные изображения ещё не покрытой части солнечного диска. Скоро, однако, фотосфера исчезает. Остаётся серп, гораздо более бледный, который есть не что иное, как солнечная атмосфера. Если наблюдение 1870 года было правильно, то полученный фотографический снимок должен дать ряд ярких изображений на месте прежних тёмных. Так оно и оказалось»

(Юнг, 1914, с. 72–73).

5.87. Автором описанного наблюдения был английский астроном Фрэнсис Бейли (1774–1844), по имени которого явление получило название «чёток Бейли». Это явление возникает в момент касания краёв дисков Луны и Солнца во время полного солнечного затмения, когда лучи Солнца проходят между горами на краю лунного диска. На вид чёток также оказывает влияние явление иррадиации света, связанное в физиологией нашего зрения.

5.88. Описано наблюдение хромосферы. Её цвет определяется излучением красной водородной линии Нα (λ=656 нм).

5.89. Они видели протуберанцы на краю солнечного диска.

5.90. Пояснение этого явления содержится в заключительной части цитаты из Клейна:

Зависит он [красноватый оттенок] от того, что незначительное количество солнечных лучей, проскользнувши около поверхности нашей планеты и преломившись в земной атмосфере, проникает внутрь тени и падает на Луну. Проходя через плотный слой атмосферы, солнечный свет становится красноватым. Этим объясняется великолепная розовая окраска, какую приобретает наше земное небо в часы утренней и вечерней зари.

5.91. Эта гипербола (в литературном смысле) Ньютона относится к судьбе комет.

5.92. Римский философ Луций Анней Сенека (ок. 4 до н.э. — 65 н.э.).

5.93. Пророческие слова о кометах как движущихся космических объектах написаны римским поэтом Манилием, жившим ещё раньше Сенеки, более двух тысяч лет назад.

5.94. Ньютон представлял себе «межпланетный эфир» как инертную, неподвижную среду, окружающую Солнце. Эта среда возмущалась влиянием самой кометы и только в том месте, где находилась комета (подобно раскалённой кочерге, сунутой в снег и вызывающей вырывающуюся из отверстия струю пара). В современной физике понятие эфира отвергнуто. Но межпланетная среда действительно существует: в основном это выброшенная Солнцем замагниченная плазма («солнечный ветер»), с большой скоростью удаляющаяся от него независимо от присутствия кометы. Испарившееся с поверхности кометного ядра вещество отталкивается в направлении от Солнца давлением солнечного ветра, действующего на ионизованные атомы и молекулы газа, а также давлением солнечного света, действующего на мелкие твёрдые частицы (пылинки) кометного вещества.

5.95. Кометы, как и все объекты Солнечной системы, движутся, подчиняясь законам Кеплера, а в более широком смысле — законам механики. В конце XIX века ещё не было известно, что орбиты комет — эллипсы, хотя у некоторых из них эксцентриситеты очень близки к единице. «Вольности» в движении комет связаны с неучтёнными гравитационными возмущениями со стороны планет, а также с действием негравитационных сил, например, реактивного давления испаряющихся с поверхности ядра газов. Изменение внешнего вида комет определяется действием Солнца и физическими процессами в их ядрах.

5.96. Комета теряет своё вещество в основном вблизи перигелия, проходя рядом с Солнцем. Поэтому блеск периодических комет уменьшается с течением времени по мере истощения их вещества. Чем реже комета возвращается к Солнцу, тем медленнее она теряет вещество. Поэтому яркие кометы — это объекты с большими периодами обращения.

5.97. Подобные кометы, тесно приближающиеся к Солнцу, теперь называют царапающиvи кометами. Например, комета 1965 г. Икейя-Секи тоже обогнула Солнце вблизи его поверхности и не изменила своей орбиты. После прохождения перигелия у неё появился гигантский хвост.

5.98. Эрос представляет собой вытянутое тело, ось вращения которого почти перпендикулярна к направлению наибольшего размера. Когда ось вращения близка к лучу зрения земного наблюдателя, сильные колебания блеска исчезают. Небольшие колебания блеска связаны с неровностями поверхности астероида, отбрасывающими тени.

5.99. В эпоху Кеплера в успешном решении вопроса о форме планетных орбит и о законах, которым подчиняется их движение, Марс играл главную роль, так как его орбита более других вытянута, т. е. заметнее отличается от круговой. В то же время, Марс, как ближайшая верхняя планета, удобен для наблюдений.

5.100. В полном объёме задача, поставленная перед наукой Эйнштейном, до сих пор не решена. Частично на вопрос «почему природа в данный момент такая, а не иная?» отвечают эволюционные науки, такие, как геология, биология, эволюционные разделы астрономии — космогония и космология. Для более глубокого понимания происхождения и развития космических тел и Вселенной в целом необходимо дальнейшее развитие астрофизики и физики элементарных частиц. Возможно, к решению этой глобальной проблемы укажет путь антропный принцип.