Послесловие ко второму изданию книги. Суперколлайдер один год спустя

Как раз тогда, когда второе издание этой книги ушло в печать в октябре 1993 г., палата представителей проголосовала за прекращение программы строительства Сверхпроводящего суперколлайдера. Хотя в прошлом после таких голосований программу удавалось спасти, похоже, на этот раз решение окончательное. Несомненно, что в ближайшие годы политологи и историки науки не останутся без работы, анализируя это решение, но думаю, что мои комментарии по поводу того, как и почему это случилось, не будут выглядеть слишком поспешными.

24 июня 1993 г. палата представителей повторила свое решение 1992 г. и проголосовала за изъятие финансирования ССК из законопроекта по финансированию энергетики и гидроэнергетики. Это решение не уменьшало финансирование энергетики и не предусматривало увеличение поддержки других областей науки. Просто те суммы, которые предназначались для ССК, стали доступными для поддержки других энергетических проектов. Теперь спасти лабораторию могло только положительное голосование в сенате.

И снова физики из всех уголков США забросили свои письменные столы и лаборатории и собрались летом в Вашингтоне, чтобы лоббировать проект строительства ССК. Театральной кульминацией борьбы за выживание ССК стали дебаты в сенате 29 и 30 сентября 1993 г. Наблюдая за дебатами, я испытывал сюрреалистические ощущения, слушая, как сенаторы в своих выступлениях спорят о существовании хиггсовских бозонов и цитируют в подкрепление своих слов эту книгу. Наконец, 30 сентября сенат 57 голосами против 42 решил продолжить финансирование ССК в полном объеме ($ 640 млн) в соответствии с запросом администрации. Это решение было затем поддержано согласительной комиссией палаты представителей и сената, однако 19 октября палата почти двумя третями голосов отклонила доклад согласительной комиссии и вернула закон о финансировании энергетики в комитет с инструкциями изъять из него финансирование ССК. После этого комитет на своем заседании решил остановить проект.

Почему это произошло? Очевидно, что речь не шла о каких-то трудностях, с которыми столкнулась программа ССК. За тот год, который прошел с момента написания этой книги, под поверхностью округа Эллис в остинских меловых отложениях уже было пройдено 25 км главного туннеля. Завершено здание и частично установлено оборудование линейного ускорителя, первого из серии ускорителей, которые должны разогнать протоны перед началом их пути внутри Суперколлайдера. Завершена работа над 570-метровым туннелем для бустера низких энергий, который должен ускорять поступившие из линейного ускорителя протоны до энергии 12 ГэВ прежде чем запустить их в бустер средних энергий. (По современным стандартам такие энергии кажутся маленькими, но когда я начинал свою работу в физике, энергия 12 ГэВ была недоступна ни одной лаборатории мира.) В Луизиане, Техасе и Вирджинии были построены заводы для массового производства магнитов, которые должны отклонять и фокусировать протоны во время их полета внутри трех бустеров и основного 83-километрового кольца. Рядом с лабораторией разработки магнитов, которую я посетил в 1991 г., появились другие строения – лаборатория тестирования магнитов, лаборатория тестирования ускорительных систем и здание, в котором должны были помещаться огромные холодильные установки и компрессоры для жидкого гелия, необходимого для охлаждения сверхпроводящих магнитов основного кольца. Одна экспериментальная программа – плод труда более тысячи квалифицированных ученых из двадцати четырех стран – была предварительно одобрена, другая близка к завершению.

Не произошло и никаких открытий в области физики элементарных частиц, которые ослабили бы доводы в пользу строительства ССК. Мы все еще безуспешно пытаемся выйти за рамки стандартной модели. Без ССК единственной надеждой остается то, что физики Европы продвинутся вперед со своими проектами и построят аналогичный ускоритель.

Проблемы ССК частично были побочным эффектом не имеющих отношения друг к другу политических веяний. Президент Клинтон продолжал поддерживать проект ССК со стороны администрации, однако, его политическая поддержка была существенно слабее, чем у президента Буша из Техаса, или у президента Рейгана, при котором проект начался. Возможно, самое главное состояло в том, что многие члены конгресса (особенно новые) ощущали необходимость продемонстрировать свою бережливость, проголосовав против финансирования хоть чего-нибудь . Стоимость проекта ССК составляет 0,043 % федерального бюджета, однако проект является удобным политическим символом.

В дебатах по ССК чаще всего звучала нота озабоченности приоритетами. Это действительно серьезный вопрос. Всегда очень трудно тратить деньги на другие дела, видя, как некоторые наши граждане недоедают и не имеют крыши над головой. Но некоторые члены конгресса отмечали, что те преимущества, которые в перспективе получит наше общество, поддерживая фундаментальную науку, перевешивают любой сиюминутный выигрыш, который может быть получен на те деньги, о которых идет речь. С другой стороны, многие члены конгресса, энергично ставившие под сомнение финансирование ССК, регулярно голосовали за другие, значительно менее важные проекты. Более крупные проекты, например космическая станция, пережили этот год не из-за их внутренней ценности, а из-за того, что так много избирателей членов конгресса экономически заинтересованы в этих программах. Возможно, что если бы Суперколлайдер стоил вдвое дороже и обеспечивал вдвое большее число рабочих мест, он бы проскочил легче.

Оппоненты ССК выдвигали обвинения в плохом управлении и безудержно растущей стоимости проекта. На самом деле никаких признаков плохого управления не было, а причиной роста расходов почти всегда были задержки финансирования со стороны правительства. Я утверждал это, давая показания в сенатском комитете по энергетике и естественным ресурсам в августе 1993 г. Но лучшим ответом на эти обвинения было сделанное в августе заявление министра энергетики О’Лири, что после израсходования 20 % от полной стоимости проект готов ровно на 20 %.

Некоторые члены конгресса доказывали, что, несмотря на научную ценность ССК, мы просто не можем позволить себе осуществить его сейчас. Но когда бы ни начал осуществляться проект таких масштабов, в течение тех лет, которые уйдут на его осуществление, обязательно найдется период, когда с экономикой будут нелады. Что же нам делать: не начинать вообще больших проектов, или прерывать их, как только в экономике намечается спад? После того, как мы списываем в корзину два миллиарда долларов и десять тысяч человеко-лет, уже вложенных в ССК, какие ученые или какое иностранное правительство захотят в будущем участвовать в любом подобном проекте, который может быть прерван, как только с экономикой опять что-то не так? Очевидно, что любая программа должна пересматриваться, если к этому вынуждают изменения в науке или технологии. Ведь именно физики – специалисты в области высоких энергий – взяли на себя инициативу по закрытию последнего проекта большого ускорителя ИЗАБЕЛЛА, как только это стало соответствовать изменению физических целей. Но никаких изменений в мотивах постройки ССК не произошло. Прекращая сейчас программу ССК, после всей проделанной работы только потому, что в этом году напряженный бюджет, Соединенные Штаты, похоже, навсегда прощаются с любой надеждой иметь когда-нибудь солидную программу исследований в области физики элементарных частиц.

Возвращаясь мыслями к летней битве, я утешаю себя тем, что некоторые члены конгресса независимо от любых экономических или политических мотивов, заставивших их поддержать ССК, по-настоящему заинтересовались той наукой, ради которой проект осуществляется. Один из них – сенатор Беннет Джонстон из Луизианы, который организовал группу поддержки проекта ССК во время дебатов в сенате. Его родной штат был экономически существенно заинтересован в строительстве магнитов для ССК, но помимо этого Джонстон оказался большим почитателем науки, что продемонстрировала его яркая речь на слушаниях в сенате. То же самое интеллектуальное восхищение наукой можно было обнаружить в заявлениях других членов конгресса: сенаторов Мойнихена из Нью-Йорка и Керри из Небраски, конгрессменов Надлера из Манхэттена и Гепхардта из Миссури, а также научного консультанта президента Джека Гиббонса. В мае 1993 г. я был членом группы физиков, которая встречалась с вновь избранными членами конгресса. После того, как другие поговорили о ценном технологическом опыте, который будет получен при строительстве ССК, я заметил, что хотя не очень разбираюсь в политике, не следует забывать, что есть немало избирателей, искренне интересующихся фундаментальными научными проблемами, а не только любыми технологическими приложениями. Конгрессмен из Калифорнии заметил после этого, что он согласен со мной только в одном пункте – в том, что я не разбираюсь в политике. Чуть позже в комнату вошел сенатор из Мэриленда, и, немного послушав дискуссию о побочных технологических результатах, заметил, что не следует забывать, что многие избиратели, кроме всего прочего, интересуются фундаментальными проблемами науки. Я ушел счастливым.

Дебаты о Суперколлайдере приводят и к более серьезным размышлениям. В течение столетий взаимоотношения науки и общества управлялись молчаливым соглашением. Ученые обычно хотели делать открытия, которые были бы универсальными, красивыми или фундаментальными, независимо от того, можно ли было предвидеть от них какой-либо конкретный выигрыш для общества. Некоторые люди, сами не являющиеся учеными, считают такую чистую науку очень увлекательной, но общество, в лице конгрессмена из Калифорнии, обычно желает поддерживать исследования в области чистой науки, главным образом, в ожидании новых приложений. Обычно такие ожидания оправдывались. Это не означает, конечно, что любая работа в науке обязательно приведет к чему-нибудь полезному. Речь идет о том, что, раздвигая границы знания, мы надеемся обнаружить действительно новые явления, которые могут оказаться полезными, как это случилось в свое время с радиоволнами, электронами и радиоактивностью. При попытках совершить эти открытия мы вынуждены проявлять технологическую и интеллектуальную виртуозность, приводящую к новым приложениям.

Но сейчас этой сделке, похоже, приходит конец. Не только некоторые члены конгресса потеряли доверие к чистой науке. Борьба за финансирование привела некоторых ученых, работающих в более прикладных областях, к отказу в поддержке тех из нас, кто занимается поиском законов природы. Те проблемы, с которыми столкнулся проект ССК в конгрессе, есть лишь один симптом этого разочарования в чистой науке. Другим является недавняя попытка сената потребовать, чтобы национальный научный фонд выделил 60 % своих расходов на социальные нужды. Я не утверждаю, что деньги будут потрачены плохо, но ужасает то, что некоторые сенаторы выбрали исследования в чистой науке как то место, откуда эти деньги можно забрать. Споры об ССК подняли вопросы, значение которых далеко выходит за рамки этого проекта, и которые останутся с нами в грядущие десятилетия.

Остин, Техас

Октябрь 1993 г.

[1] Centre Eurepeen des Recherches Nucleaire (CERN) – Европейский Центр Ядерных Исследований. – Прим. перев.

[2] Имеется в виду 1992 г. – Прим. перев.

[3] К сожалению, судьба ССК определилась: конгресс США прекратил финансирование строительства в конце 1993 г. О последствиях этого решения подробнее будет сказано ниже. – Прим. перев.

[4] Я всегда полагал, что согласно учению Аристотеля брошенный камень будет лететь по прямой, пока не истощится его начальный импульс, а затем упадет вертикально вниз. Однако мне не удалось обнаружить это утверждение в его сочинениях. Специалист по Аристотелю Роберт Ханкинсон из Техасского университета заверил меня, что на самом деле Аристотель никогда не утверждал ничего столь противоречащего наблюдениям, и что это есть позднейшее средневековое искажение взглядов Аристотеля.

[5] Zilsel E.  The Genesis of the Concept of Physical Law // Philosophical Review. 51 (1942): 245.

[6] Green P.S.  Alexander to Actium: The Historical Evolution of the Hellenistic Age (Berkeley and Los Angeles: University of California Press, 1990), pp. 456, 475–78.

[7] Я благодарен Б. Нагелю за предложение использовать эту цитату.

[8] См. The Autobiography of Robert A. Millikan (New York: Prentice-Hall, 1950), p. 23, а также заметку К. К. Darrow (Isis 41 (1950): 201).

[9] Речь идет о физике Абдусе Саламе.

[10] Основания для чувства удовлетворенности в науке конца XIX в. можно найти в книге: Badash L.  The Completeness of Nineteenth-Century Science // Isis 63 (1972): 48–58.

[11] Michelson A.A.  Light Waves and Their Uses (Chicago: University of Chicago Press, 1903), p. 163.

[12] Dirac P.A.M.  Quantum Mechanics of Many Electron Systems // Proceedings of the Royal Society Al23 (1929): 713.

[13] Пробелы между инициалами, а также в общераспространенных сокращениях т.д., т.е. и подобных здесь и далее пропущены, чтобы избежать появления разрывов строк посреди тесно связанных между собой сочетаний слов. Использование для этой цели неразрывных пробелов невозможно, т.к. они удаляются библиотечными скриптами. – Прим. авторов fb2-документа.

[14] Цит. пo Boxer S.  // New York Times Book Review, January 26, 1992, p. 3.

[15] Перевод Б. Пастернака.

[16] Huxley T.H.  On a Piece of Chalk / Ed. Loren Eisley (New York: Scribner, 1967).

[17] Мы будем использовать общепринятую единицу измерения энергии электронвольт  (эВ ). Такую энергию получает электрон, если его проталкивает по проводу батарейка напряжением 1 В.

[18] Конкретные цвета меняются от одного соединения меди к другому, поскольку окружающие атомы влияют на энергии атомных состояний.

[19] В металле эти внешние электроны отрываются от отдельных атомов и путешествуют между ними, так что чисто металлическая медь не проявляет особой тенденции поглощать фотоны именно оранжевого цвета, поэтому сама медь не выглядит зелено-голубой.

[20] Речь идет о событиях конца 1970-х гг. – Прим. перев.

[21] Gross D.J.  The Status and Future Prospects of String Theory // Nuclear Physics В (Proceedings Supplement) 15 (1990): 43.

[22] Nagel E.  The Structure of Science: Problems in the Logic of Scientific Explanation (New York: Harcourt, Brace, 1961).

[23] Согласно законам Кеплера, орбиты планет имеют форму эллипсов, в одном из фокусов которых находится Солнце; при обращении вокруг Солнца скорость каждой планеты меняется так, что линия, соединяющая планету с Солнцем, заметает за равные промежутки времени равные площади; квадраты периодов обращения пропорциональны кубам больших полуосей эллиптических орбит. Законы Ньютона утверждают, что каждая частица во Вселенной притягивает любую другую частицу с силой, пропорциональной произведению масс частиц, и обратно пропорциональной квадрату расстояния между ними, а также определяют, как движутся любые тела под действием любой заданной силы.

[24] Shaefer H.F. III.  Methylene: A Paradigm for Computational Quantum Chemistry // Science 231 (1986): 1100.

[25] Ряд теоретиков исследуют возможность проведения вычислений включающих сильные ядерные взаимодействия, представляя пространство-время в виде решетки отдельных точек и используя действующие параллельно компьютеры для определения изменения значений полей в каждой точке. Выражается определенная надежда, что такими методами можно вывести свойства ядер из принципов квантовой хромодинамики. До сих пор не удалось даже вычислить массы протона и нейтрона, из которых состоят ядра.

[26] Эта цитата взята из «Логико-философского трактата» Л. Витгенштейна[26][26] Витгенштейн Л.  Логико-философский трактат. М.: Иностранная литература, 1958.

. Во многом в том же духе мой философски настроенный друг проф. Филип Боббитт с факультета юриспруденции Техасского университета говорил мне: «Когда я отвечаю ребенку, спросившему меня, почему яблоко падает на Землю, что “это из-за тяготения, дорогой”, я не объясняю ничего. Предлагаемые физикой математические описания физического мира не являются объяснениями…». Я согласен с этим утверждением, если все, что подразумевается под тяготением, сводится к тому, что у тяжелых предметов имеется тенденция падать на Землю. С другой стороны, если понимать под тяготением весь комплекс явлений, описанных теориями Ньютона или Эйнштейна, включая движения приливов на Земле, планет и галактик, тогда ответ, что яблоко падает из-за тяготения, безусловно выглядит для меня как объяснение. Во всяком случае, именно так используют слово «объяснение» действующие ученые.

[27] Наиболее стабильными являются те элементы, у которых число электронов полностью заполняет одну или несколько оболочек. К таким элементам относятся благородные газы гелий (два электрона), неон (десять электронов), аргон (восемнадцать электронов) и т.д. (Эти газы называются благородными, так как вследствие стабильности их атомов эти газы не участвуют в химических реакциях.) У кальция двадцать электронов, так что два из них находятся вне заполненных оболочек аргона, и они могут быть легко потеряны. Кислород имеет восемь электронов, так что не хватает как раз двух для того, чтобы заполнить оболочки неона, так что кислород охотно подбирает два электрона, чтобы заполнить дырки в своих оболочках. Углерод имеет шесть электронов, так что его можно рассматривать либо как гелий с четырьмя лишними электронами, либо как неон с четырьмя недостающими электронами, и поэтому углерод может как терять, так и приобретать четыре электрона. (Такая амбивалентность позволяет атомам углерода очень сильно связываться друг с другом, например, как в алмазе.)

[28] Если атом обладает положительным или отрицательным электрическим зарядом, то он стремится захватывать или терять электроны до тех пор, пока не станет нейтральным.

[29] Слова, что Вселенная расширяется, могут ввести в заблуждение, так как ни планетные системы, ни галактики, ни само пространство не расширяются. Галактики разлетаются друг от друга точно так же, как разлеталось бы любое облако частиц, получивших первоначальный толчок, отбрасывающий их друг от друга.

[30] Anderson P.  // Science 177 (1972): 393.

[31] Чтобы определить энтропию, представьте, что температура некоторой системы очень медленно увеличивается от абсолютного нуля. Увеличение энтропии системы при получении каждой последующей маленькой порции тепловой энергии равно этой энергии, деленной на ту абсолютную температуру, при которой тепловая энергия передается.

[32] Важно заметить, что в системе, обменивающейся энергией с окружающей средой, энтропия может уменьшаться. Возникновение жизни на Земле связано с уменьшением энтропии, и это разрешено термодинамикой, поскольку Земля получает энергию от Солнца и отдает энергию в окружающее пространство.

[33] Nagel E.  The Structure of Science, pp. 338–45.

[34] История этой битвы излагается в книге: Brush S.  The Kind of Motion We Call Heat (Amsterdam: North-Holland, 1976), особенно в разделе 1.9 книги 1.

[35] Термодинамика применима к черным дырам не потому, что внутри них находится большое число атомов, а потому, что черные дыры содержат большое число определяемых квантовой теорией гравитации фундаментальных единиц массы, каждая из которых равна 10?5  г и называется массой Планка. Если бы черная дыра имела массу меньше 10?5  г, термодинамика к ней была бы неприменима.

[36] Hoffman R.  Under the Surface of the Chemical Article // Angewandte Chemie 27 (1988): 1597–1602.

[37] Primas H.  Chemistry, Quantum Mechanics, and Reductionism, 2nd ed. (Berlin: Springer-Verlag, 1983).

[38] Pauling L.  Quantum Theory and Chemistry // Max Plank Festschrift / Ed. B. Kockel, W. Mocke, and A. Papapetrou (Berlin: VEB Deutscher Verlag der Wissenschaft, 1959), pp. 385–88.

[39] Pippard А.В.  The Invincible Ignorance of Science // Contemporary Physics 29 (1988): 393 – лекция памяти Эддингтона, прочитанная в Кэмбридже 28 января 1988.

[40] Иногда утверждают, что разница между человеком и другими животным и состоит в способности говорить и что люди обретают сознание только тогда, когда начинают говорить. В то же время компьютеры используют определенный язык, но не кажутся обладающими сознанием, а наш старый сиамский кот Тай Тай никогда не говорил (и имеет ограниченное число выражений мордочки), но во всех остальных отношениях проявляет те же признаки сознательной деятельности, что и люди.

[41] Ryle G.  The Concept of Mind (London: Hutchinson, 1949).

[42] Gissing G.  The Place of Realism in Fiction. Reprinted in Selections Autobiographical and Imaginative from the Works of George Gissing (London: Jonathan Cape and Harrison Smith, 1929), p. 217.

[43] Moyers B.  A World of Ideas / Ed. B.S. Flowers (New York: Doubleday, 1989), pp. 249–62.

[44] Anderson P.  On the Nature of Physical Law // Physics Today, December 1990, p. 9.

[45] Откровенно говоря, я должен добавить, что Ян рассматривает свою работу как разумное расширение копенгагенской интерпретации квантовой механики, а не как часть паранормальной программы. Реалистичная интерпретация квантовой механики на языке «многих историй» имеет то преимущество, что позволяет избежать такого рода путаницы.

[46] Jahn R.G.  // Physics Today, October 1991, p. 13.

[47] Общая теория относительности во многом основана на том принципе, что гравитационные поля не оказывают  влияния на очень маленькие свободно падающие тела, кроме того, что определяют их свободное падение. Земля находится в состоянии свободного падения в Солнечной системе, поэтому, находясь на Земле, мы не ощущаем гравитационного поля Луны, Солнца или чего-нибудь еще, не считая явлений вроде приливов, возникающих из-за того, что Земля не очень мала.

[48] Science, August 9, 1991, p. 611.

[49] Однажды в статье я назвал эту точку зрения «объективный редукционизм», см. Weinberg S.  Newtonianism, Reductionism, and the Art of Congressional Testimony // Nature 330 (1987): 433–37. Я сомневался, что эта фраза будет подхвачена философами науки, но ее подхватил, по крайней мере, биохимик Дж. Робинсон (См. Robinson J.D. Aims and Achievements of the Reductionist Approach in Biochemistry/Molecular Biology/Cell Biology: A Response to Kincaid // Philosophy of Science).

[50] Достоевский Ф.М.  Записки из подполья: Собр. соч. в 9 т. Т. 2. М.: ACT, 2003.

[51] Под холизмом (от англ. whole  – целый) понимается изучение сложных структур в их целостности без сведения к изучению отдельных сторон явления. – Прим. перев.

[52] Мауr Е.  How Biology Differs from the Physical Sciences // Evolution at a Crossroads / Ed. D. Depew and B. Weber (Cambridge, Mass.: MIT Press, 1985), p. 44.

[53] Weinberg S.  Unified Theories of Elementary Particle Interactions // Scientific American 231 (July 1974): 50.

[54] Weinberg S.  Newtonianism.

[55] См. Мауr E.  The Limits of Reductionism и мой ответ в журнале Nature 331 (1987): 475.

[56] Насколько я могу понять, Майр различает три вида редукционизма: конструктивный редукционизм  (или онтологический редукционизм, или анализ), являющийся методом изучения объектов путем разложения их на составные части; теоретический редукционизм , являющийся объяснением целой теории с помощью более общей теории; объясняющий редукционизм , представляющий собой точку зрения, что «полное знание о тех далее неделимых составных частях, из которых состоит сложная система, достаточно для ее объяснения». Главная причина, по которой я отвергаю эту классификацию, заключается в том, что каждая из приведенных категорий имеет мало общего с тем, что я имею в виду (хотя, пожалуй, теоретический редукционизм мне ближе всего). Каждая из этих категорий определяется тем, что делали, делают или будут делать ученые; я же говорю о самой природе. Например, хотя физики и не могут объяснить свойства очень сложных молекул вроде ДНК с помощью квантовой механики электронов, ядер и электрических сил, а химикам удается справится с этим с помощью своего языка и своих понятий, все равно не существует независимых принципов химии, являющихся истинами, не основанными на более глубоких принципах физики.

[57] Park R.L.  // The Scientist, June 15,1987 (из доклада на симпозиуме «Большая наука/Малая наука» на ежегодном заседании Американского физического общества 20 мая 1987).

[58] Цит. по Anderson R.W.  Письмо в газету Нью-Йорк Таймс от 8 июня 1986.

[59] Rubin H.  Molecular Biology Running into a Cul-de-sac? Письмо в журнал Nature 335 (19SS): 121.

[60] Mayr Е.  The Growth of Biological Thought: Diversity, Evolution, and Inheritance (Cambridge, Mass.: Harvard University Press, 1982), p. 62.

[61] Я использую здесь слово «прямая», так как на самом деле разные ветви физики оказывают друг другу значительную косвенную помощь. Частично это проявляется в виде взаимного обогащения идеями. Так, физики-твердотельщики добыли один из своих главных математических методов (так называемый метод ренормализационной группы) в физике частиц, а физики-частичники узнали о явлении спонтанного нарушения симметрии из физики твердого тела. В 1987 г. на слушаниях в комитете конгресса, давая показания в поддержку проекта ССК, Роберт Шриффер (один из создателей, вместе с Джоном Бардиным и Леоном Купером, современной теории сверхпроводимости) подчеркнул, что его собственная работа над проблемой сверхпроводимости возникла из опыта работы над мезонными теориями в физике элементарных частиц. (В статье «Джон Бардин и теория сверхпроводимости», опубликованной в журнале Physics Today в апреле 1992 г., Шриффер отмечает, что высказанная им в 1957 г. догадка о виде квантово-механической волновой функции возникла из размышлений о более чем двадцатилетней давности работе Синитиро Томонаги по теории поля.) Конечно, есть и другие способы взаимопомощи разных ветвей физики. Например, если бы не удалось создать магниты со сверхпроводящими обмотками, то энергетические затраты на работу ССК сделали бы проект безнадежно дорогим; синхротронное излучение, испускаемое в качестве побочного продукта в ряде ускорителей высоких энергий, оказалось весьма ценным в медицине и материаловедении.

[62] Мы с Альвином Вайнбергом друзья, но не родственники. В 1966 г., когда я впервые посетил Гарвард, я оказался во время обеда в факультетском клубе за одним столом с покойным Джоном Ван Флеком, несколько резковатым аристократического вида физиком. Он был одним из тех, кто в конце 1920-х гг. впервые применил новые методы квантовой механики к теории твердого тела. Ван Флек спросил меня, не являюсь ли я родственником того  Вайнберга. Я был несколько ошарашен, но потом понял, что он имел в виду: в те годы я был довольно молодым теоретиком, а Альвин был директором Окриджской Национальной лаборатории. Я собрал все мои запасы сарказма и ответил, что я сам по себе  Вайнберг. Мне показалось, что это не произвело на Ван Флека сильного впечатления.

[63] Weinberg A.M.  Criteria for Scientific Choice // Physics Today March 1964, pp. 42–48. Также см. Weinberg A.M.  Criteria for Scientific Choice // Minerva 1 (winter 1963): 159–71; и Criteria for Scientific Choice II: The Two Cultures // Minerva 3 (Autumn 1964): 3–14.

[64] Weinberg S.  Newtonianism.

[65] Gleick J.  Chaos: Making a New Science (New York: Viking, 1987).

[66] Выступление Дж. Глейка на Нобелевской конференции в колледже Густава Адольфа в октябре 1991.

[67] Гамов Г.  Мистер Томпкинс исследует атом. М.: УРСС, 2003. – Прим. ред.

[68] Более точно, элементами гейзенберговской таблицы были, как их называют, амплитуды переходов, квадраты которых определяют скорости переходов. После того как Гейзенберг вернулся с Гельголанда в Геттинген, ему объяснили, что математические операции над такими таблицами давно хорошо известны математикам; подобные таблицы математики называют матрицами, а операции, в результате которых можно перейти от таблицы, представляющей скорость электрона, к таблице, представляющей квадрат скорости, известны как матричное умножение. Это один из примеров загадочной способности математиков предвидеть те структуры, которые имеют отношение к реальному миру.

[69] Конечно, в любом объеме пространства имеется бесконечное количество точек, и реально невозможно привести список чисел, представляющий любую волну. Однако для наглядности (а часто и для численных расчетов) можно представлять себе пространство состоящим из очень большого, но конечного числа точек, занимающих большой, но конечный объем.

[70] Они представляют собой комплексные числа, в том смысле, что в них содержится величина, обозначаемая буквой i  и равная корню квадратному из ?1, а также обычные положительные и отрицательные числа. Та часть комплексного числа, которая пропорциональна i , называется его мнимой частью, оставшаяся называется действительной частью. Я опускаю подробности, связанные с этим усложнением, так как хотя оно само по себе важно, но не влияет на те замечания по поводу квантовой механики, которые я хотел бы сделать.

[71] На самом деле волновой пакет электрона начинает рассыпаться даже до того, как электрон ударяется об атом. В конце концов это стало понятным благодаря тому, что в соответствии с вероятностной интерпретацией квантовой механики волновой пакет описывает электрон не с одной определенной скоростью, а с целым набором разных возможных скоростей.

[72] Более точно, поскольку длина волны света равна постоянной Планка, деленной на импульс фотона, неопределенность в положении любой частицы не может быть меньше, чем постоянная Планка, деленная на неопределенность ее импульса. Мы не замечаем неопределенности в положении обычных тел вроде биллиардных шаров, так как постоянная Планка очень мала. В системе единиц, с которой лучше всего знакомо большинство физиков и основанной на сантиметрах, граммах и секундах как базовых единицах длины, массы и времени, планковская постоянная равна 6,626 ? 10?27  г · см2  · с?1 . Это значение так мало, что длина волны биллиардного шара, катящегося по столу, много меньше размера атомного ядра. Таким образом, не составляет труда одновременно очень точно измерить как положение шара, так и его импульс.

[73] Это описание может привести к ошибочному заключению, что в состоянии с определенным импульсом существует чередование точек, в которых нахождение электрона маловероятно (соответствующие значения волновой функции наименьшие), и точек, в которых электрон может находиться с большой вероятностью (соответствующие значения волновой функции максимально возможные). Это неправильно и объясняется отмеченным в предыдущем примечании фактом, что волновая функция комплексна. На самом деле у каждого значения волновой функции есть две части – действительная и мнимая и их фазы не совпадают: когда одна мала, другая велика. Вероятность того, что электрон находится в любом конкретном малом объеме, пропорциональна сумме квадратов двух частей волновой функции в данной точке пространства, и в состоянии с определенным импульсом эта сумма строго постоянна.

[74] Мне посчастливилось встречаться с Бором, правда уже в конце его научной деятельности и в самом начале моей. Бор принимал меня, когда я в первый раз приехал на годичную стажировку в его институт в Копенгагене. Однако мы беседовали очень мало, так что я не вынес из этих разговоров каких-то мудрых мыслей – Бор был знаменит своим бормотанием и всегда было довольно трудно догадаться, что он имеет в виду. Я помню выражение ужаса на лице моей жены, когда во время вечеринки, проходившей в зимнем саду его дома, Бор что-то долго ей говорил и она чувствовала, что не может понять ничего из того, что ей говорит великий человек.

[75] Bohr N.  Atti del Congresso Internazionale dei Fisici, Como, Settembre 1927. Перепечатано в журнале Nature 121 (1928): 78, 580.

[76] В последующие годы Бор подчеркивал важность принципа дополнительности в областях, весьма далеких от физики. Рассказывают, что однажды Бора спросили на немецком языке, какое качество дополнительно к истине (Wahrheit ). После некоторых раздумий Бор ответил: ясность (Klahrheit ). Я почувствовал глубину этого высказывания, когда писал эту главу.

[77] Строго говоря, вероятности различных конфигураций определяются суммой квадратов действительной и мнимой частей значений волновой функции.

[78] В реальном мире частицы, естественно, не ограничены только двумя положениями, однако существуют физические системы, которые для практических целей можно рассматривать как имеющие только две конфигурации. Реальный пример такой системы с двумя состояниями – спин электрона. (Спин или момент импульса любой системы есть мера того, насколько быстро она вращается, насколько она массивна и насколько далеко от оси вращения находится масса. Принимается, что спин направлен вдоль оси вращения.) В классической механике спин гироскопа или планеты может иметь любые величину и направление. Напротив, в квантовой механике при измерении величины спина электрона относительно любого направления, например на север (обычно с помощью измерения энергии взаимодействия спина с магнитным полем в данном направлении), мы можем получить только один из двух результатов: электрон вращается вокруг этого направления либо по часовой стрелке, либо против нее, но величина спина всегда одна и та же и равна постоянной Планка, деленной на 4?.

[79] Сумма этих двух вероятностей должна равняться единице (т.е. 100 %), так что сумма квадратов значений здесь  и там  должна равняться единице. Отсюда вытекает очень полезная геометрическая картина. Нарисуем прямоугольный треугольник, горизонтальная сторона которого имеет длину, равную величине здесь  волновой функции, а вертикальная сторона – длину, равную величине там . (Конечно, под горизонтальным и вертикальным направлениями я подразумеваю любые два взаимно перпендикулярных направления. С тем же успехом можно говорить о направлениях вдоль и поперек.) Не обязательно нужно быть генералом современной армии, чтобы знать один забавный факт о квадрате гипотенузы этого треугольника: она равна сумме квадратов вертикальной и горизонтальной сторон. Но, как мы только что заметили, эта сумма равна единице, поэтому длина гипотенузы тоже равна единице. (Под единицей я подразумеваю не 1 метр или 1 фут, а число 1, так как вероятности не измеряются в квадратных метрах или квадратных футах.) Обратно, если нам дана стрелка единичной длины, имеющая определенное направление в двумерном пространстве (иными словами, двумерный единичный вектор), то ее проекции на горизонтальное и вертикальное направления или на любую другую пару взаимно перпендикулярных направлений задает пару чисел, квадраты которых в сумме равны единице. Таким образом, вместо того, чтобы задавать значения здесь  и там , можно представлять состояние стрелкой (гипотенузой нашего треугольника) единичной длины, проекция которой на любое направление представляет значение волновой функции для той конфигурации системы, которая соответствует этому направлению. Такая стрелка называется вектором состояния . Дирак развил довольно абстрактную формулировку квантовой механики на языке векторов состояний, преимущества которой перед формулировкой на языке волновых функций заключаются в том, что можно говорить о векторах состояний без ссылок на конкретные конфигурации системы.

[80] Конечно, большинство динамических систем более сложны, чем наша мифическая частица. Например, рассмотрим две такие частицы. Тогда возможны четыре конфигурации, в которых частицы 1 и 2 находятся в состояниях: здесь  и здесь , здесь  и там , там  и здесь , там  и там . Таким образом, волновая функция состояния двух частиц принимает четыре значения, и для описания эволюции этого состояния во времени требуется задать шестнадцать постоянных чисел. Заметим, что имеется ровно одна волновая функция, описывающая объединенное состояние двух частиц. Это же верно и в общем случае: нам не нужно иметь отдельные волновые функции для каждого электрона или другой частицы, а лишь одну общую волновую функцию системы, сколько бы частиц она не содержала.

[81] Утверждая, что эти состояния имеют определенный импульс, я говорю неточно. При двух возможных положениях состояние иди максимально близко к состоянию ровной волны с горбом здесь  и впадиной там , отвечающей частице с ненулевым импульсом, а состояние стой похоже на плоскую волну, длина волны которой много больше, чем расстояние между здесь  и там , и соответствует состоянию покоя частицы. Это примитивная версия того, что математики называют фурье-анализом. (Строго говоря, мы должны записать значениястой  и иди  волновой функции как сумму или разность значений здесь  или там , деленных на корень из двух, для того, чтобы удовлетворить упомянутому в предыдущем примечании условию, что сумма квадратов двух значений должна равняться единице.)

[82] Capra F.  The Tao of Physics (Boston: Shambhala, 1991).

[83] См.: Диккенс Ч.  Рождественская песнь в прозе / Пер. Т. Озерской // Диккенс Ч. Приключения Оливера Твиста. Повести и рассказы. М: Художественная литература, 1969 (Библиотека всемирной литературы. Серия вторая. Т. 82). – Прим. перев.

[84] Физики иногда используют термин «квантовый хаос», имея в виду квантовые системы, которые бы ли бы хаотическим и в классической физике. Однако сами квантовые системы никогда не могут быть хаотическими.

[85] В значительной степени это сделал А. Аспект.

[86] Явление, при котором две мировые истории прекращают интерферировать друг с другом, называется «декогерентностью». Изучение вопроса о том, как это происходит, привлекло позднее внимание теоретиков, в том числе Мюррея Гелл-Манна и Джеймса Хартля и независимо Брайса Де Витта.

[87] Вот неполный перечень ссылок: Hartle J.В.  Quantum Mechanics of Individual Systems // American Journal of Physics (1968): 704; Witt B.S. De  and Graham N.  // The Many-Worlds Interpretation of Quantum Mechanics (Princeton: Princeton University Press, 1973), pp. 183–86; Deutsch D.  Probability in Physics. Oxford University Mathematical Institute preprint, 1989; Aharonov Y.

[88] Позднее Польчински нашел слегка модифицированную интерпретацию этой теории, в которой подобная связь со сверхсветовой скоростью запрещена, но «разные миры», соответствующие разным результатам измерений, могут продолжать взаимодействовать друг с другом.

[89] Иными словами, орбиты не являются точно замкнутыми. Планета, совершающая движение из начальной точки максимального сближения с Солнцем (перигелия) к точке, находящейся на максимальном расстоянии от Солнца, и назад в точку перигелия, совершает оборот вокруг Солнца на величину чуть больше 360°. Результирующее медленное изменение ориентации орбиты обычно называют прецессией перигелия.

[90] Информация, приведенная здесь о докладах Нобелевских лауреатов и номинациях, взята из прекрасной научной биографии Эйнштейна (Pais A. Subtle Is the Lord: The Science and Life of Albert Einstein (New York: Oxford University Press, 1982), chap. 30). (Рус. пер. Пайс А.  Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, Физматлит, 1989.)

[91] Для дальнейших ссылок по теме см. Mayo D.G.  Novel Evidence and Severe Tests // Philosophy of Science 58 (1991): 523.

[92] Я сделал эту заметку в моей лекции в Колумбийском университете в 1984 г. И я был очень рад увидеть, что тот же самый вывод был получен независимо историком науки; см. Brush S.  Prediction and Theory Evaluation: The Case of Light Bending // Science 246 (1989): 1124.

[93] Должен заметить, что Эйнштейн предложил третий тест общей теории относительности, основанный на предсказываемом гравитационном красном смещении света. Брошенный с поверхности Земли вверх камень теряет свою скорость, преодолевая силу земного притяжения. Точно так же свет, испущенный с поверхности звезды или планеты, теряет энергию, улетая в открытый космос. Эта потеря энергии светом проявляется как рост длины волны и, следовательно (для видимого света), как сдвиг в красную сторону спектра. Общая теория относительности предсказывает, что относительный сдвиг для света, испущенного с поверхности Солнца, составляет 2,12 · 10?6 . Было вы сказано предложение изучить спектр света от Солнца и посмотреть, не сдвинуты ли спектральные линии на указанную величину относительно своих нормальных положений. Астрономы стали искать эффект, но поначалу ничего не обнаружили. Некоторых физиков это обеспокоило. В докладе Нобелевского комитета за 1917 г. отмечалось, что измерения К. Сентджона в обсерватории Маунт-Вильсон не обнаружили красного смещения, и делался вывод, что «эйнштейновская теория относительности не заслуживает Нобелевской премии, каковы бы ни бы ли ее достоинства в других отношениях». В 1919 г. Нобелевский комитет опять отметил красное смещение как причину, по которой вопрос об общей теории относительности откладывается. Однако большинство физиков того времени (включая самого Эйнштейна), похоже, не были слишком обеспокоены проблемой красного смещения. Сейчас мы видим, что техника, использовавшаяся в 20-е гг., не позволяла провести аккуратное измерение гравитационного красного смещения света от Солнца. Так, предсказываемое гравитационное красное смещение 2 · 10?6  могло быть замаскировано смещением, возникающим от излучающих свет конвективных потоков газов на поверхности Солнца (знакомый эффект Доплера) и не имеющим никакого отношения к общей теории относительности. Если эти газы испускаются в сторону наблюдателя со скоростью 600 м/с (что вполне возможно на Солнце), эффект полностью перекроет гравитационное красное смещение. Только в последнее время тщательное изучение света, исходящего от края солнечного диска (где конвективные потоки испускаются в основном под прямым углом к лучу зрения), привело к обнаружению гравитационного красного смещения примерно предсказываемой величины. На самом деле первые точные измерения гравитационного красного смещения использовали не свет от Солнца, а гамма-лучи (свет очень коротких длин волн), которые поднимались вверх или падали с высоты 22,6 м в башне Джефферсоновской физической лаборатории в Гарварде. Эксперимент Р. Паунда и Г. Ребки в 1960 г. обнаружил изменение длины волны гамма-лучей, которое с точностью 10 % согласовывалось с предсказаниями общей теории относительности. Через несколько лет точность была доведена до 1 %.

[94] Особенно в работе Ирвина Шапиро из МТИ.

[95] Это явление известно как броуновское движение. Оно вызвано соударениям и молекул жидкости с частицами. С помощью эйнштейновской теории броуновского движения можно использовать наблюдения этого движения для вычисления ряда свойств молекул. Кроме того, это явление помогло физикам и химикам убедиться в реальности молекул.

[96] Для знатоков замечу, что здесь речь идет о безмассовой скалярной теории.

[97] Например, предположим, что мы выбрали систему отсчета, которая во всем пространстве движется с ускорением 9,8 м/с2  в направлении от Техаса к центру Земли. В этой системе отсчета мы в Техасе не будем ощущать гравитационного поля, поскольку это та система отсчета, которая свободно падает в Техасе. Однако наши друзья в Австралии почувствуют двойную перегрузку по сравнению с обычным гравитационным полем, так как в Австралии такая система отсчета будет ускоряться от центра Земли, а не к центру.

[98] Это верно в отношении ньютоновской формулировки его теории, основанной на действии сил на расстоянии, но не в отношении последующей переформулировки теории Ньютона (сделанной Лапласом и др.) на языке теории поля. Но даже в теоретико-полевой версии теории Ньютона нетрудно добавить новое слагаемое в полевые уравнения, которые приведут к другим изменениям в зависимости силы от расстояния. В частности, закон обратных квадратов может быть заменен формулой, в которой вплоть до определенных расстояний сила тяготения приближенно меняется обратно пропорционально квадрату расстояния, но на больших расстояниях экспоненциально быстро убывает. В общей теории относительности модификации подобного рода невозможны.

[99] Строго говоря, это верно только для медленно движущихся тел малых размеров. Для тел, движущихся с большой скоростью, сила тяготения зависит также от их импульса. Именно поэтому гравитационное поле Солнца способно отклонять лучи света, так как они обладают импульсом, но не массой.

[100] Борн, Гейзенберг и Йордан на самом деле рассматривали только упрощенную версию электромагнитного поля, в которой игнорировались усложнения, связанные с поляризацией света. Эти усложнения были несколько позднее рассмотрены Дираком, а полное рассмотрение квантово-полевой теории электромагнетизма было сделано Энрико Ферми.

[101] Разрешенные энергии фотонов образуют континуум, так что эта «сумма» является на самом деле интегралом.

[102] Отнюдь не каждая сумма бесконечного числа слагаемых сама бесконечно велика. Например, хотя сумма 1 + 1/2 + 1/3 + 1/4 +… действительно бесконечна, но сумма 1 + 1/2 + 1/4 + 1/8 +… оказывается вполне конечной величиной.

[103] История этих открытий рассказывается в книге Cao T.Y. , Schweber S.S.  The Conceptual Foundations and Philosophical Aspects of Renormalization Theory. Опубликовано в Synthese (1992).

[104] Строго говоря, Лэмб измерил разность сдвигов энергий двух состояний атома водорода, которые, согласно старой теории Дирака, должны были в отсутствие процессов испускания и обратного поглощения фотонов иметь строго одинаковые энергии. Хотя Лэмб и не мог измерить точные энергии этих двух атомных состояний, он смог установить, что эти энергии различаются на крохотную величину, показав тем самым, что по какой-то причине энергии двух состояний сдвинулись на разные величины.

[105] Эта идея была высказана несколько ранее Дираком, Вайскопфом и Крамерсом.

[106] Чуть более точно, включение процесса с позитроном приводит к тому, что сумма по энергиям ведет себя как сумма ряда 1 + 1/2 + 1/3 +…, а не как сумма 1 + 2 + 3 + 4 +… Обе суммы бесконечны, но одна чуть в меньшей степени, чем другая, в том смысле, что требуется меньше усилий понять, что с ней делать.

[107] Эти вычисления были проведены самим Лэмбом вместе с Кроллом, а также Вайскопфом и Френчем.

[108] Цитата взята из работы «Aus dem Nachlass der Achtzigerjahre» опубликованной в F. Nietzsche, Werke III / Ed. Schlecta, 6th ed. (Munich: Carl Hauser, 1969), p. 603. Эта фраза – сюжет романа «Смерть пчеловода» (Death of a Beekeeper. New York: New Directions, 1981) моего техасского коллеги Ларса Густавсона.

[109] Эти теоретические и экспериментальные результаты были опубликованы в работе Kinoshita Т.  // Quantum Electrodynamics / Ed. Т. Kinoshita (Singapore: World Scientific, 1990).

[110] В квантовой электродинамике существуют и более серьезные проблемы. В 1954 г. Мюррей Гелл-Манн и Френсис Лоу показали, что эффективный заряд электрона очень медленно возрастает с ростом энергии процесса, в котором заряд измеряется, и выдвинули гипотезу (ранее высказанную советским физиком Львом Ландау), что при некоторой очень большой энергии эффективный заряд становится бесконечным. Позднейшие вычисления показали, что эта катастрофа происходит только в рамках чистой квантовой электродинамики – теории фотонов и электронов, и нигде более. Однако та энергия, при которой возникает бесконечность, столь велика (много больше, чем вся энергия, содержащаяся в полной массе наблюдаемой Вселенной), что задолго до того, как она будет достигнута, станет невозможно игнорировать все другие сорта частиц в природе. Таким образом, даже если и есть какие-то вопросы о математической согласованности квантовой электродинамики, они сливаются с вопросом о согласованности наших квантовых теорий всех частиц и взаимодействий.

[111] Это сделали Фейнман и Гелл-Манн, и независимо Маршак и Сударшан.

[112] Здесь я ссылаюсь на обобщение квантовой электродинамики, сделанное Янгом и Миллсом.

[113] Это не совсем точно, поскольку я упомянул эту работу в докладе на Сольвеевском конгрессе в Брюсселе в 1967 г. Однако Институт научной информации подсчитывает только статьи, опубликованные в журналах, а мое замечание было опубликовано в материалах конференции.

[114] Более точно, это была единственная статья по физике элементарных частиц (и вообще по физике, не считая биофизики, химической физики и кристаллографии) в списке из 100 статей по всем наукам, которые чаще всего цитировались в охваченный исследованиями Института научной информации период с 1945 по 1988 гг. (Из-за войны с 1938 по 1945 г., вероятно, просто не было часто цитируемых работ по физике элементарных частиц.)

[115] Несколько лет тому назад я побывал в Оксфорде и имел возможность спросить руководителя оксфордского эксперимента с висмутом Пэта Сандерса, выясняла ли его группа, что было не так в предыдущих опытах. Он ответил мне, что этим никто не занимался и, к сожалению, не мог заниматься, поскольку оксфордские экспериментаторы уничтожили аппаратуру и использовали ее как часть новой установки, на которой теперь получаются правильные ответы. Вот так это делается.

[116] Это предложение основывалось на принципе симметрии, предложенном Роберто Печчеи и Элен Квинн.

[117] Эти модификации предложили М. Дайн, В. Фишлер и М. Средницки, а также Дж. Ким.

[118] Это излучение обнаружили А. Пензиас и Р. Вильсон. Об открытии фонового излучения я рассказываю в своей книге «Первые три минуты».

[119] Например, Бэзил Лиддел Гарт – защитник «непрямых действий».

[120] Должен признать, что когда выражение «искусство войны» появляется в переводах классических трудов Сун Цзы, Жомини и Клаузевица, слово «искусство» используется в противоположность слову «наука», в том же смысле, как «умение» противоположно «знанию», но не как «субъект» противоположен «объекту» или «вдохновение» – «порядку». Использование этими авторами слова «искусство» служит для того, чтобы подчеркнуть, что они пишут об умении воевать, поскольку хотят принести пользу людям, реально выигрывающим войны, но собираются подойти к вопросу научно и систематически. Генерал конфедератов Джеймс Лонгстрит использовал термин «искусство войны» в очень похожем на тот, который использую я, смысле, когда говорил, что и Макклеллан, и Ли были «мастерами знания войны, но не ее искусства». Позднейшие историки, вроде Чарльза Омана и Сирила Фоллса, писавшие об «искусстве войны», объяснили, что не существует системы войны. Читатель, который добрался до этого места книги, согласится, что это же верно в отношении системы науки.

[121] Астрофизик С. Чандрасекар трогательно написал о роли красоты в науке (Truth and Beauty: Aesthetics and Motivations // Science (Chicago: University of Chicago Press, 1987) и Bulletin of the American Academy of Arts and Science 43, no. 3 (December 1989): 14).

[122] Этим же «балуется» более знакомый русскому читателю Андрей Вознесенский. – Прим. перев.

[123] Я имею в виду десять уравнений поля и четыре уравнения движения.

[124] Цитата взята из Holton G.  Constructing a Theory: Einstein’s Model // American Scholar 48 (summer 1979): 323.

[125] Например, частота, с которой осциллирует волновая функция любой системы в состоянии с определенной энергией, равна этой энергии, деленной на мировую константу – постоянную Планка. Такая система выглядит совершенно одинаково для двух наблюдателей, установивших показания своих часов с разницей в одну секунду. Однако, если они оба посмотрят на систему в тот момент, когда часы каждого показывают ровно полдень, обнаружится, что колебания находятся в разных фазах. Так как часы установлены по-разному, наблюдатели на самом деле фиксируют положение системы в разные моменты времени, так что один наблюдатель может, например, видеть горб волны, а другой – впадину. В частности, фаза отличается на число циклов колебаний (или долей цикла) за одну секунду, т.е. на частоту колебаний в циклах за секунду, а следовательно, на энергию, деленную на постоянную Планка. В современной квантовой механике мы определяем энергию любой системы как изменение фазы (в циклах или долях цикла) волновой функции этой системы в данный момент времени по часам , если сдвинуть установку часов на одну секунду. Постоянная Планка участвует в игре только потому, что энергия исторически измеряется в единицах типа калорий, киловатт-часов или электрон-вольт, принятых задолго до создания квантовой механики. Постоянная Планка является просто переводным множителем между этими более старыми системами единиц и естественной квантово-механической единицей энергии – числом циклов в секунду. Можно показать, что определенная таким образом энергия обладает всеми свойствами, которые мы обычно ассоциируем с этим понятием, в том числе свойством сохранения. Действительно, инвариантность законов природы относительно преобразования симметрии, заключающегося в переустановке наших часов, и дает ответ на вопрос, почему существует такая величина, как энергия. Точно так же компонента импульса любой системы в любом заданном направлении определяется как произведение постоянной Планка на изменение фазы волновой функции при сдвиге точки, относительно которой измеряются координаты, на один сантиметр в этом направлении. Величина спина системы относительно любой оси определяется как произведение постоянной Планка на изменение фазы волновой функции при повороте системы отсчета, используемой нами для измерения направлений, на один оборот вокруг этой оси. С такой точки зрения импульс и спин представляют собой то, что они есть, благодаря симметрии законов природы относительно изменений системы отсчета, используемой нами для измерения положений или направлений в пространстве. (Перечисляя свойства электронов, я не включил координату, так как координата и импульс являются сопряженными величинами. Можно описывать состояние электрона, задавая его координату или импульс, но не обе величины одновременно.)

[126] Гравитоны экспериментально не обнаружены, но это неудивительно. Расчеты показывают, что они так слабо взаимодействуют, что отдельные гравитоны и не могли быть обнаружены ни в одном из до сих пор осуществленных экспериментов. Тем не менее никто серьезно не сомневается в существовании гравитонов.

[127] Строго говоря, эти семейства образуют только левые состояния электрона и нейтрино и u – и d -кварков. (Имеется в виду, что если совместить большой палец левой руки с осью вращения, направленной вдоль скорости частицы, то пальцы левой руки, охватывая ось, укажут направление вращения.) Различие между семействами, образованными левыми и правыми частицами, является причиной нарушения слабыми ядерными силами симметрии между правым и левым. (Асимметрия правого и левого в слабых взаимодействиях была предсказана в 1956 г. теоретиками Т. Ли и Ч. Янгом. Она была подтверждена в опытах по ядерному бета-распаду группой из Национального бюро стандартов в Вашингтоне под руководством Ц. By и в опытах по распаду пи-мезонов Р. Гарвиным, Л. Ледерманом и М. Вейнрихом, а также Дж. Фридманом и В. Телегди.) Мы до сих пор не знаем, почему только левые электроны, нейтрино и кварки образуют эти семейства; этот вопрос является вызовом для теорий, которые выйдут за рамки стандартной модели элементарных частиц.

[128] В 1918 г. математик Герман Вейль предположил, что симметрия общей теории относительности по отношению к зависящим от пространства-времени изменениям положения или ориентации должна быть дополнена симметрией по отношению к зависящим от пространства-времени изменениям способа измерения (или «калибровки») расстояний и времени. Вскоре этот принцип симметрии был отвергнут физиками (хотя его версии до сих пор возникают в спекулятивных теориях), но математически он очень похож на внутреннюю симметрию уравнений электродинамики, которую стали поэтому называть калибровочной инвариантностью. Затем, после того как в 1954 г. Ч. Янг и Р. Миллс, в надежде понять сильные взаимодействия, ввели более сложный вид локальной внутренней симметрии, ее тоже назвали калибровочной симметрией.

[129] Различные варианты введения нового атрибута кварков – цвета – были предложены О. Гринбергом, М. Ханом и Й. Намбу, и В. Бардиным, Г. Фрицшем и М. Гелл-Манном[129][129] Независимо и раньше понятие цвета было введено в работе Н.Н. Боголюбова, Б.В. Струминского и А.Н. Тавхелидзе. – Прим. перев.

.

[130] Название «глюон» произошло от англ. glue  (клей). – Прим. перев.

[131] См. примечания к главе VIII.

[132] Впервые список всех известных частиц для общего пользования был составлен в 1962 г. Леоном Розенфельдом и получил название таблиц Розенфельда. Первые таблицы умещались на одной странице. Сейчас это книжка объемом более двухсот страниц. – Прим. перев.

[133] В дираковской теории электроны вечны. Процесс рождения электрона и позитрона интерпретируется как переход электрона отрицательной энергии в состояние положительной энергии с появлением дырки в море электронов отрицательных энергий, которая наблюдается как позитрон. Аннигиляция электрона и позитрона интерпретируется как падение электрона в эту дырку. В ядерном бета-распаде электроны рождаются без позитронов  за счет энергии и электрического заряда электронного поля.

[134] В начале 70-х гг. Дирак и я были на конференции во Флориде. Я воспользовался случаем и спросил его, как он может объяснить тот факт, что существуют частицы (вроде пи-мезона или W ), которые имеют спин, отличный от спина электрона, и не могут иметь стабильных состояний отрицательной энергии, но тем не менее имеют определенные античастицы. Дирак ответил, что он никогда не думал, что эти частицы существенны.

[135] Из воспоминаний Гейзенберга. Цит. по работе Telegdi V. and Weisskopf V.  // Physics Today, July 1991, p. 58. Такое же мнение по поводу ограниченности многообразия возможных математических форм было высказано математиком Э. Глисоном.

[136] Всю свою жизнь Харди гордился, что его исследования в чистой математике, возможно, не будут иметь никаких практических применений. Но когда Керзон Хуанг и я работали в МТИ над поведением вещества при экстремально высокой температуре, мы нашли необходимые нам формулы в работе Харди и Рамануджана по теории чисел.

[137] Другими главными строителями искривленного пространства были Янош Больяи и Николай Иванович Лобачевский. Работы Гаусса, Больяи и Лобачевского были важными для будущего развития математики, поскольку они описали такое пространство не просто как искривленное наподобие поверхности Земли и погруженное в неискривленное пространство более высокой размерности, а как обладающее внутренней кривизной, без каких-либо ссылок на то, как это пространство погружено в высшие измерения.

[138] Одна из версий пятого постулата Евклида утверждает, что через данную точку вне данной прямой можно провести одну и только одну прямую, параллельную данной. В новой неевклидовой геометрии Гаусса, Больяи и Лобачевского можно провести много таких параллельных прямых.

[139] Эти эксперименты были сделаны М. Туве вместе с Н. Хейденбергом и Л. Хафстадом с помощью ускорителя Ван де Граафа напряжением 1 млн В, который выстреливал пучок протонов на богатую протонами мишень типа парафина.

[140] По этой причине такая симметрия называется симметрией изотопического спина [140][140] Или изотопической симметрией . – Прим. перев.

. (Она была предложена в 1936 г. Г. Брейтом и Ю. Финбергом и независим о Б. Кассеном и Ю. Кондоном на основании экспериментов Туве и др.) Симметрия изотопического спина математически аналогична внутренней симметрии, лежащей в основе слабых и электромагнитных взаимодействий в электрослабой теории, но физически эти симметрии различны. Одно отличие заключается в том, что в семейства группируются разные частицы: протон и нейтрон в случае симметрии изотопического спина и левые электрон и нейтрино, а также левые u – и d -кварки в случае электрослабой симметрии. Кроме того, электрослабая симметрия утверждает инвариантность законов природы относительно преобразований, которые могут зависеть от положения в пространстве и времени. В то же время уравнения, описывающие ядерную физику, сохраняют свой вид, только если мы преобразуем протоны и нейтроны друг в друга одинаково везде и во все моменты времени. Наконец, в рамках современной теории сильных ядерных взаимодействий симметрия изотопического спина является приближенной и воспринимается как случайное следствие малых масс кварков, а электрослабая симметрия точна и считается фундаментальным принципом электрослабой теории.

[141] Если два преобразования по отдельности оставляют что-то неизменным, то это же верно для их «произведения», определяемого как осуществление одного преобразования за другим. Если преобразование оставляет что-то неизменным, то это же верно для обратного преобразования, отменяющего действие первого. Кроме того, всегда существует одно преобразование, оставляющее все неизменным, т.е. преобразование, которое не делает ничего. Это преобразование называют единичным, так как оно действует как умножение на единицу. Если выполнены перечисленные три свойства, то любое множество операций становится группой.

[142] Говоря коротко, существуют три бесконечные серии простых групп Ли: знакомые группы вращений в двух, трех и более измерениях и еще две серии преобразований, в чем-то похожих на вращения, которые называются унитарными и симплектическими преобразованиями. Кроме того, существует ровно пять «исключительных» групп Ли, не принадлежащих ни одной из перечисленных серий.

[143] Речь идет о знаменитой первой проповеди Сиддхартхи Гаутамы (Будды), в которой он сформулировал восьмеричный путь избавления от страданий и достижения вечного блаженства (нирваны): правильные взгляды, правильные намерения, правильные речи, правильные действия и т.д. – Прим. перев.

[144] Открытие сделала группа ученых под руководством Н. Самиоса.

[145] В работе Галуа идет речь о группе перестановок решений уравнения.

[146] См. Wigner E.P.  The Unreasonable Effectiveness of Mathematics // Communications in Pure and Applied Mathematics 13 (1960): 1 – 14. (На русском языке опубликована в книге: Вигнер Э.П.  Инвариантность и законы сохранения. Этюды о симметрии. М.: УРСС, 2002.)

[147] Richards J.L.  Rigor and Clarity: Foundations of Mathematics in France and England, 1800–1840 // Science in Context 4 (1991): 297.

[148] То, что я называю «мягким» фазовым переходом, чаще называют «фазовым переходом второго рода». Это делается для того, чтобы отличать такие фазовые переходы от «фазовых переходов первого рода», вроде кипения воды при 100 °С или таяния льда при 0 °С, в которых свойства вещества меняются скачкообразно. На то, чтобы превратить лед при 0 °С в воду при той же температуре или воду при 100 °С в водяной пар, необходимо затратить некоторое количество энергии (так называемой скрытой теплоты). Однако на то, чтобы истребить в куске железа все его магнитные свойства в точке Кюри, никакой дополнительной энергии не требуется.

[149] Crick F.  What Mad Pursuit: A Personal View of Scientific Discovery (New York: Basic Books, 1988).

[150] Строго говоря, триплеты, не имеющие смысла, несут послание «конец цепочки».

[151] Из письма Кеплера к Фабрициусу (май 1605 года). Цит. по Zilsel E.  The Genesis of the Concept of Physical Law // Philosophical Review 51 (1942): 245.

[152] Фитцджеральд Э.  Рубайят Омара Хайяма. Поэма / Пер. О. Румера // Омар Хайям. Рубаи: Пер. с перс.-тадж. Л.: Сов. писатель, 1986. 320 с. (Б-ка поэта. Большая серия). – Прим. ред.

[153] Два моих друга-философа заметили, что название этой главы «Против философии» является преувеличением, так как я не возражаю  против философии вообще, а только говорю о плохом влиянии на науку философских доктрин типа позитивизма и релятивизма. Они предположили, что я дал такой заголовок в качестве ответа на книгу Фейерабенда «Против метода». На самом деле заголовок этой статьи обязан своим происхождением заголовкам пары известных обзорных статей по юриспруденции: «Против распоряжения собственностью» Оуэна Фисса и «Против этикета» Луизы Вайнберг. В любом случае, я не думаю что название «Против позитивизма и релятивизма» было бы более привлекательно.

[154] Gale G.  Science and the Philosophers // Nature 312 (1984): 491.

[155] Wittgenstein L.  Culture and Value (Oxford: Blackwell, 1980).

[156] Например, см. некоторые статьи в Reduction in Science: Structure, Examples, Philosophical Problems / Ed.W. Balzer, D.A. Pearce, and H.-J. Schmidt, (Dordrecht: Reidel, 1984).

[157] Многие другие работающие ученые точно так же реагируют на писания философов. Например, в своем ответе философу Г. Кинсайду биохимик Дж. Робертсон заметил, что «биологи несомненно повинны в отвратительных философских грехах. И они должны с энтузиазмом приветствовать информированное внимание со стороны философов. Это внимание, однако, будет полезным, если философы разберутся в том, что биологи хотят и что они делают».

[158] Feyerabend P.К.  Explanation, Reduction, and Empiricism // Minnesota Studies in the Philosophy of Science 3 (1962): 46–48. Философы, к которым обращается Фейерабенд, являются позитивистами Венского кружка, но о них речь пойдет позже.

[159] Hall Rupert A.  Making Sense of the Universe // Nature 327 (1987): 669.

[160] Эта работа была построена на так называемой инфляционной космологии Алана Гута.

[161] Цит. по Bernstein J.  Ernst Mach and the Quarks // American Scholar 53 (winter 1983–84): 12.

[162] Англ. перевод взят из Sources of Quantum Mechanics / Ed. B.L. van der Waerden (New York: Dover, 1967).

[163] Смотри книгу G. Gale «Science and the Philosophers».

[164] Среди историков науки идет спор о том, примирился ли Мах с философских позиций с специальной теорией относительности Эйнштейна, которая была навеяна собственными взглядами Маха.

[165] Мой друг Самбурский в очень молодом возрасте знал Кауфманна. Он подтвердил мое впечатление о Кауфманне как об очень жестком человеке, находящемся в плену собственной философии.

[166] Эта точка зрения была убедительно обоснована философом Д. Шэйпером в работе Shapere D.  The Concept of Observation in Science and Philosophy // Philosophy of Science 49 (1982): 485–525.

[167] Heisenberg W.  Encounters with Einstein, and other Essays on People, Places and Particles (Princeton, N.J.: Princeton University Press, 1983), p. 114.

[168] Bernstein J.  Ernst Mach.

[169] Тем не менее я думаю, что мы извлекли полезные уроки из теории S -матрицы. Квантовая теория поля такова, какова она есть, потому что это единственный способ гарантировать, что наблюдаемые , и в частности S -матрица, будут иметь осязаемые физические свойства. В 1981 г. я делал доклад в Радиационной лаборатории в Беркли, и, поскольку я знал, что Джеффри Чу находится в зале, я проявил все свое старание, чтобы сказать побольше приятных вещей о положительном влиянии теории S -матрицы. После доклада Джефф подошел ко мне и сказал, что ему было приятно слушать мои замечания, но сейчас он работает над квантовой теорией поля.

[170] Я имею в виду так называемые неабелевы калибровочные теории или теории Янга-Миллса.

[171] Это вычисление использует математические методы, разработанные в 1954 г. в связи с квантовой электродинамикой Мюрреем Гелл-Манном и Френсисом Лоу. Однако в квантовой электродинамике и в большинстве других теорий взаимодействие увеличивается с увеличением энергии.

[172] В частности, эксперименты по разрушению протонов и нейтронов электронами больших энергий, проведенные в Стэнфордском центре линейного ускорителя группой под руководством Джерома Фридмана, Генри Кендалла и Ричарда Тейлора.

[173] Речь идет о Гроссе, Вильчеке и обо мне.

[174] Насколько я знаю, эта идея принадлежит Г. ’т Хофту и Л. Сасскинду. Более ранее предложение о пленении кварков было высказано Г. Фритчем, М. Гелл-Манном и Г. Лейтвилером.

[175] Аргументы в пользу существования кварков стали бесспорными после открытия в 1974 г. группами, возглавлявшимися Бартоном Рихтером и Сэмом Тингом, частицы, которую они назвали, соответственно, ?  и J . Свойства этой частицы ясно показывали, что она состоит из нового тяжелого кварка и соответствующего антикварка, хотя эти кварки и не могли быть рождены по отдельности. (Существование такого типа тяжелого кварка было предсказано ранее Шелдоном Глэшоу, Джоном Иллиопулосом и Лучано Майани как способ избежать ряда проблем теории слабых взаимодействий, а масса этого кварка была теоретически оценена Мари Гайар и Беном Ли. Частица J/?  (читается джей-пси) была предсказана Томасом Аппельквистом и Дэвидом Политцером.)

[176] Bunge M.  A Critical Examination of the New Sociology of Science // Philosophy of the Social Sciences 21 (1991): 524 [Part 1] and ibid., 22 (1991): 46 [Part 2].

[177] Kuhn T.  The Structure of Scientific Revolution, 2nd ed., enlarged (Chicago: University of Chicago Press, 1970). (Рус. пер. Кун Т.  Структура научных революций. М.: ACT, 2002.)

[178] Меритократия – общество, иерархия членов которого определяется только личными заслугами каждого в определенной области. – Прим. перев.

[179] Traweek S.  Beamtimes and Lifetimes: The World of High Energy Physicists (Cambridge, Mass.: Harvard University Press, 1988).

[180] Chubin D.E.  and Hackett E.J.  Peerless Science: Peer Review and U.S. Science Policy (Albany, N.Y.: State University of New York Press, 1990); цитируется в книжном обозрении S. Treiman  // Physics Today, October 1991, p. 115.

[181] Pickering A.  Constructing Quarks: A Sociological History of Particle Physics (Chicago: University of Chicago Press, 1984).

[182] Аналогичные взгляды были высказаны в ранних работах Фейерабенда (более 20 лет назад), но с тех пор он изменил их. Тревик заботливо обходит этот вопрос. Она выражает симпатию точке зрения физиков, что электрон существует, признавая, что в своей работе она считает уместным полагать, что существуют физики.

[183] Более подробно об этом см. Science and Its Public: The Changing Relationship / Ed. G. Holton and W. Blanpied (Boston: Reidel, 1976), а также Holton G.  How to Think About the «Anti-science Phenomenon» // Public Understanding of Science 1 (1992): 103.

[184] Feyerabend P.  Explanation, Reduction, and Empiricism.

[185] Harding S.  The Science Question in Feminism (Ithaca, N.Y.: Cornell University Press, 1986), p. 250.

[186] Roszak T.  Where the Wasteland Ends (Garden City, N.Y.: Doubleday, Anchor Books, 1973), p. 375.

[187] Недавно, откликаясь на неуклюжую социологическую интерпретацию научного прогресса, генетик из Лондонского университета Дж. Джонс заметил, что «социология науки имеет такое же отношение к самой научной деятельности, как порнография к сексу: это дешевле, легче и, поскольку ограничено только воображением, значительно забавнее».

[188] Редакционная статья в журнале Nature 356 (1922): 729. Министр в обсуждаемомом вопросе – Дж. Уолден.

[189] Appleyard В.  Understanding the Present (London: Picador, 1992).

[190] Holton G.  How to Think About the End of Science // The End of Science / Ed. R.Q. Elvee (Lanham, Minn.: University Press of America, 1992).

[191] Возможно, что нейтрино и даже фотоны имеют массы, но столь малые, что не поддаются обнаружению, но эти массы существенно отличались бы от масс электронов и W  и Z частиц, что не соответствовало бы ожиданиям, если бы в природе явно проявлялась симметрия между этими частицами.

[192] Например, уравнение, утверждающее, что отношение массы u -кварка к массе d -кварка плюс отношение массы d -кварка к массе u -кварка равно 2,5, очевидно симметрично относительно обоих кварков. Оно имеет два решения: в одном масса u -кварка вдвое больше массы d -кварка, в другом масса d -кварка вдвое больше массы u -кварка. У этого уравнения нет решения, отвечающего равным массам, поскольку тогда оба отношения равнялись бы 1, а их сумма равнялась бы 2, а не 2,5.

[193] Направление этого магнитного поля определяется любым случайным магнитным полем, например полем Земли. Важно, что напряженность возникающего в железе магнитного поля одинакова, вне зависимости от того, каким бы слабым ни было случайное внешнее поле. Если нет сильного внешнего магнитного поля, направление намагниченности внутри железа разное в разных «доменах», и те магнитные поля, которые спонтанно возникают внутри отдельных доменов, взаимно уничтожаются во всем куске магнита. Домены можно выстроить в одном направлении, поместив охлажденный кусок железа в сильное внешнее магнитное поле. Даже если затем выключить внешнее поле, намагниченность сохраняется.

[194] Эта симметрия нарушена не полностью. Остающаяся ненарушенная симметрия (известная как электромагнитная калибровочная инвариантность) обеспечивает равенство нулю массы фотона. Но и эта остаточная симметрия нарушается в сверхпроводнике. Действительно, что такое сверхпроводник? По существу, это не что иное, как кусок вещества, в котором нарушена электромагнитная калибровочная инвариантность.

[195] Это было сделано К. Коуэном и Ф. Райнесом.

[196] В том числе Ф. Энглерт и Р. Браут, а также Г. Гуральник, К. Хаген и Т. Киббл.

[197] За счет этого нового взаимодействия произведения  полей любых частиц могут приобрести вакуумные средние значения, нарушающие электрослабую симметрию, хотя вакуумные средние значения отдельных полей остаются при этом равными нулю. (Знакомым свойством вероятностей является то, что произведение величин может иметь ненулевое среднее значение, даже если средние значения отдельных величин равны нулю. Например, средняя высота океанских волн над уровнем моря, по определению, равна нулю, но среднее значение квадрата высоты океанских волн, т.е. произведения высоты на саму себя, не равно нулю.) Это новое взаимодействие может оставаться необнаруженным, если оно действует только на пока что не найденные гипотетические очень тяжелые частицы.

[198] Эти теории были независимо разработаны Ленни Сасскиндом из Стэнфорда и мной. Чтобы отличить предложенный в них новый тип сверхсильных взаимодействий от знакомых сильных «цветовых» взаимодействий, связывающих кварки внутри протонов, эти взаимодействия по предложению Сасскинда назвали техницветом . Трудности с идеей техницвета связаны с тем, что в ней не учитываются массы кварков, электронов и т.п. Путем разных ухищрений можно придать этим частицам массы и не вступить в противоречие с экспериментом, но тогда сама теория становится настолько вычурной и искусственной, что к ней трудно относиться серьезно.

[199] Теории, объединяющие сильные и электрослабые взаимодействия, часто называют теориями великого объединения. Конкретные варианты таких теорий предлагались Джогешем Пати и Абдусом Саламом, Говардом Джорджи и Шелдоном Глэшоу, и многими другими.

[200] Речь идет о работе, написанной Говардом Джорджи, Элен Квинн и мной.

[201] Точнее, предсказывается ровно одно отношение этих констант. Когда в 1974 г. предсказание было сделано, оно поначалу казалось ошибочным: теория предсказывала значение 0,22, а из опытов по рассеянию нейтрино следовало, что значение отношения равно 0,35. С течением времени экспериментальное значение этой величины уменьшалось, и сейчас оно очень близко к предсказываемой величине 0,22. Однако измерения и теоретические расчеты достигли сейчас такой точности, что мы можем различать расхождение между ними на уровне нескольких процентов. Мы увидим далее, что существуют теории (подчиняющиеся новому типу симметрии, известной как суперсимметрия), которые естественным образом объясняют это остающееся расхождение.

[202] В 1899 г. Макс Планк заметил, что существует естественная единица измерения энергии, построенная из мировых констант – скорости света, квантовой постоянной (позднее названной именем Планка) и ньютоновской постоянной тяготения, входящей в известную формулу для силы тяготения, действующей между двумя массами.

[203] Такую теорию в англоязычной литературе называют ТОЕ (по первым буквам английских слов Theory Of Everything ), а по-русски иногда переводят как Теория Всего Сущего  (ТВС). – Прим. перев.

[204] Суперсимметрия была предложена как захватывающая возможность Юлиусом Вессом и Бруно Зумино в 1974 г., но с тех пор интерес к суперсимметрии проявлялся только в связи с решением проблемы иерархии. (Другие варианты суперсимметрии были предложены в более ранних работах Ю.А. Гольфанда и Е.П. Лихтмана, а также Д.В. Волкова и В.П. Акулова, но в этих работах не раскрывалось физическое значение суперсимметрии, так что они не привлекли внимания. По крайней мере частично, Весс и Зумино были вдохновлены работами 1971 г. по теории струн П. Рамона, А. Неве и Дж. Шварца и Ж.-Л. Жервэ и Б. Сакиты.)

[205] До возникновения суперсимметрии считалось, что никакая симметрия не может запретить такие массы. Отсутствие масс у таких частиц, как кварки и электроны, фотон, W – и Z -частицы и глюоны, в уравнениях первоначальной версии стандартной модели неразрывно связано с тем, что у этих частиц есть спин. (Знакомое явление поляризации света есть прямое следствие наличия спина фотона.) Однако для того, чтобы поле имело ненулевое вакуумное среднее, нарушающее электрослабую симметрию, это поле должно быть бесспиновым. В противном случае, вакуумное среднее будет нарушать также симметрию вакуума по отношению к изменению направлений, что грубо противоречит наблюдениям. Суперсимметрия решает проблему, устанавливая связь между бесспиновым полем, вакуумное среднее которого нарушает электрослабую симметрию, и различными полями со спином, которым электрослабая симметрия запрещает иметь массы, входящие в полевые уравнения. У суперсимметричных теорий много своих проблем: суперпартнеры известных частиц не обнаружены, следовательно, они должны быть намного тяжелее, и поэтому сама суперсимметрия должна нарушаться. Существует ряд интересных предложений о механизме нарушения суперсимметрии, причем некоторые из них включают гравитационное взаимодействие, однако, вопрос все еще открыт.

[206] В той версии стандартной модели, которая основана на введении нового сверхсильного взаимодействия (техницвета), можно обойти проблему иерархий, поскольку массы вообще не входят в уравнения, описывающие физику при энергиях много меньше планковской. Вместо этого шкала масс частиц W  и Z , а также других элементарных частиц стандартной модели, определяется тем, как изменяются с энергией константы техницветового взаимодействия. Считается, что техницветовое взаимодействие, а также сильное и электрослабое взаимодействия, имеют общую константу при энергии, близкой к энергии Планка. С уменьшением энергии константа будет расти очень медленно, так что цветовое взаимодействие будет недостаточно сильным, чтобы нарушить любую симметрию, пока энергия не уменьшится до величины, намного меньше планковской энергии. Вполне вероятно, что без всякой тонкой настройки параметров теории, техницветовое взаимодействие будет расти с уменьшением энергии чуть быстрее, чем обычное цветовое взаимодействие, так что оно породит массы W – и Z -частиц, близкие к наблюдаемым, в то время как обычное цветовое взаимодействие, действуя в одиночку, породит в тысячу раз меньшие массы этих частиц.

[207] Суперсимметрия сопоставляет всем известным кваркам, фотонам и т.д. «суперпартнеров» другого спина. Хотя ни одна из этих частиц не наблюдалась, теоретики не замедлили дать им имена: суперпартнеры (нулевого спина) частиц типа кварков, электронов и нейтрино, называются скварками, сэлектронами и снейтрино, а суперпартнеры (полуцелого спина) фотона, W , Z и глюонов называются фотино, вино, зино и глюино. Я как-то предложил называть этот местный жаргон «лангино»[207][207] По-русски это звучало бы как «языкино». – Прим. перев.

, но Гелл-Манн предложил лучший термин «сязык». Совсем недавно идея суперсимметрии получила мощный толчок от экспериментов по распаду Z -частицы в ЦЕРНе. Как отмечалось выше, эти эксперименты сейчас настолько точны, что можно говорить о небольшом (порядка 5 %) расхождении между предсказанным в 1974 г. отношением констант, равным 0,22, и наблюдаемым значением. Интересно, что расчеты, учитывающие существование скварков и глюино, а также всех остальных требуемых суперсимметрией новых частиц, приводят к таким изменениям констант взаимодействия, которые вполне достаточны, чтобы привести к согласию между теорией и экспериментом.

[208] Впервые это было обнаружено в 1968 г. при сравнении экспериментальных результатов Рея Дэвиса с расчетами Джона Бакала ожидаемого потока солнечных нейтрино.

[209] Это было предложено в 1985 г. С.П. Михеевым и А.Ю. Смирновым на основе более ранней работы Линкольна Вольфенштейна.

[210] В 2002 г. установлено, что по дороге от Солнца электронные нейтрино частично превращаются в нейтрино мюонного типа (эффект нейтринных осцилляций), т.е. у нейтрино действительно имеется очень маленькая масса. – Прим. перев.

[211] Перевод Анны Радловой.

[212] Предложено независимо Йоширо Намбу, Хольгером Нильсеном и Леонардом Сасскиндом.

[213] Это замечание принадлежит Эдварду Виттену.

[214] Некоторые из этих трудностей можно преодолеть только путем наложения симметрии, которую позднее назвали суперсимметрией, так что такие теории часто называют теориями суперструн .

[215] Хотя такая нежелательная частица возникает в теориях струн как мода колебаний замкнутой  струны, не удается избежать появления этой частицы, рассматривая только открытые струны, так как при соударениях открытых струн обязательно образуются замкнутые струны.

[216] К этому выводу пришли независимо Ричард Фейнман и я.

[217] Это было впервые предложено в 1974 г. Дж. Шерком и Дж. Шварцем и независимо Т. Йонейя.

[218] Цит. по Horgan J.  // Scientific American, November 1991, p. 48.

[219] Действительно, теорию струн можно рассматривать как теорию частиц, отвечающих различным модам колебаний струны, но из-за бесконечно большого числа сортов частиц в любой струнной теории она отличается от обычных квантовых теорий поля. Например, в квантовой теории поля испускание и обратное поглощение одного сорта частиц (скажем, фотона) приводит к бесконечному сдвигу энергии – в правильно сформулированной теории струн эта бесконечность сокращается благодаря эффектам испускания и поглощения частиц, принадлежащих бесконечному числу других типов.

[220] Эта несогласованность в теории струн была чуть ранее обнаружена Виттеном и Луисом Альварес-Гауме.

[221] Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен.

[222] Дэвид Гросс, Джеффри Харви, Эмиль Мартинес и Райан Ром.

[223] Конформная симметрия основана на факте, что при движении множества струн в пространстве, они заметают в пространстве-времени двумерную поверхность. Каждая точка на поверхности имеет метку, задающую момент времени, и другую метку, определяющую координату вдоль одной из струн. Как и для любой другой поверхности, геометрия этой заметенной струнами двумерной поверхности описывается выражением для расстояния между любой парой очень близких точек, записанного через координатные метки. Принцип конформной инвариантности утверждает, что уравнения, управляющие движением струн, сохраняют свою форму, если мы изменим способ измерения расстояний, умножив все расстояния между какой-то точкой и любой соседней точкой на величину, произвольным образом зависящую от положения первой точки. Конформная симметрия необходима потому, что в противном случае колебания струны в направлении оси времени приведут (согласно одной из формулировок теории) либо к отрицательным вероятностям, либо к нестабильности вакуума. При наличии конформной симметрии эти времениподобные колебания могут быть устранены из теории преобразованием симметрии, и поэтому безвредны.

[224] Термин «антропный принцип» ввел Б. Картер. См., например, Confrontation of Cosmological Theories with Observation / Ed. M.S. Longair (Dordrecht: Reidel, 1974); Carter B.  The Anthropic Principle and Its Implications for Biological Evolution // The Constants of Physics / Ed. W. McCrea and M.J. Rees (London: Royal Society, 1983), p. 137; Barrow J.D.  and Tipler F.J.  The Anthropic Cosmological Principle (Oxford: Clarendon Press, 1986); Gribbin J. and Rees M.  Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology (New York: Bantam Books, 1989), chap. 10; Leslie J. Universes (London: Routledge, 1989).

[225] Салпетер в своей статье 1952 года также говорит о том, что И. Опик выдвигал эту идею в 1951 году.

[226] С Хойлом работали Д.Н.Ф. Данбар, В.А. Венцель, В. Уолинг.

[227] На самом деле, уровни энергии кислорода также должны обладать специальными свойствами, чтобы не допустить превращения всего углерода в кислород.

[228] В группу входили М. Ливио, Д. Холловелл, А. Вейс и Дж.В. Труран.

[229] Конкретно, на 60 кэВ. Это, конечно, очень маленькая энергия по сравнению с разностью в 7,644 МэВ между энергиями этого нестабильного состояния и стабильного наинизшего состояния углерода. Но не требуется никакой тонкой настройки, чтобы сделать энергию этого нестабильного состояния ядра углерода равной с такой же точностью энергии ядра бериллия-8 и ядра гелия, поскольку в хорошем приближении соответствующие состояния ядер углерода и бериллия являются просто слабо связанными ядерными молекулами, состоящими из трех или двух ядер гелия. (Я благодарен моему коллеге Вадиму Каплуновскому из Техасского университета за это замечание.)

[230] Эта версия антропного принципа иногда называется слабым антропным принципом.

[231] Физик, эмигрант из бывшего СССР, рассказывал мне, что несколько лет тому назад в Москве ходила шутка по поводу того, что антропный принцип объясняет, почему жизнь так плоха. Существует значительно больше возможностей того, чтобы жизнь была плохой, а не счастливой. Антропный принцип требует только, чтобы законы природы допускали существование разумных существ, но не утверждает, что эти существа будут радоваться жизни.

[232] Hoyle F.  Galaxies, Nuclei, and Quasars (London: Heinemann, 1965).

[233] Строго говоря, эти «кротовые норы» возникают математически в том подходе к квантовой гравитации, которая известна как евклидово интегрирование по траекториям. Неясно, какое отношение все это может иметь к реальным физическим процессам.

[234] Коулмен продолжал настаивать (как Баум и Хокинг ранее), что вероятности этих констант имеют бесконечно высокие пики при определенных значениях, так что с подавляющей вероятностью константы примут эти конкретные значения. Однако такой вывод базируется на математической формулировке (в виде евклидового интеграла по траекториям) квантовой космологии, согласованность которой находится под вопросом. Трудно быть полностью уверенным во всем этом, поскольку мы имеем дело с гравитацией в квантовой области, т.е. там, где наши уравнения уже неадекватны.

[235] Чтобы вновь показать, насколько бывает сложной история науки, замечу, что сразу же после работы Эйнштейна 1917 г. по космологии его друг Биллем де Ситтер указал на то, что уравнения гравитационного поля Эйнштейна, модифицированные путем включения космологической постоянной, имеют другой класс решений, также по внешнему виду статических, но не содержащих (или почти не содержащих) материи. Это разочаровало Эйнштейна, так как в его решении космологическая постоянная связана со средней космической плотностью материи, в согласии с теми идеями, которые Эйнштейн почерпнул у Маха. Кроме того, решение Эйнштейна (с материей) на самом деле нестабильно: любое малое возмущение переведет его в конце концов в решение де Ситтера. Чтобы еще больше запутать дело, отмечу, что модель де Ситтера только приближенно статична. Хотя пространственно-временная геометрия в использованной де Ситтером координатной системе не изменяется со временем, любые малые пробные частицы, помещенные в его вселенную, будут разлетаться друг от друга. На самом деле, когда в начале 1920 г. в Англии стали известны измерения Слайфера, они были сначала интерпретированы Эддингтоном в рамках решения де Ситтера уравнений Эйнштейна при наличии космологической постоянной, которое также является статическим, а не с помощью первоначальной теории Эйнштейна, приводящей к нестатическому решению.

[236] Abbott L.  // Scientific American 258, no. 5 (1985): 106.

[237] Мы не можем даже надеяться, что найдется механизм, с помощью которого вакуумное состояние потеряет энергию, перейдя в состояние с более низкой энергией и, следовательно, меньшей космологической постоянной, и в конце концов спустится в состояние с нулевой полной космологической постоянной, так как некоторые из этих возможных вакуумных состояний в теориях струн уже обладают большой отрицательной  полной космологической постоянной.

[238] Если обнаружится меньшая или большая плотность, то сразу возникнет вопрос, почему расширение продолжалось миллиарды лет и все еще замедляется.

[239] Popper К.R.  Objective Knowledge: An Evolutionary Approach (Oxford: Clarendon Press, 1972), p. 195. (Рус. пер. Поппер К.Р.  Объективное знание. Эволюционный подход. М.: УРСС, 2002.)

[240] Redhead М.  Explanation. August 1989.

[241] Интересное обсуждение этой возможности дается в книге Davies P. What Are the Laws of Nature // The Reality Club #2 / Ed. John Brockman (New York: Lynx Communications, 1988).

[242] Wheeler J.A.  Beyond the Black Hole // Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein / Ed. H. Woolf (Reading, Mass.: Addison-Wesley, 1980), p. 341.

[243] Nielsen H.B.  Field Theories Without Fundamental Gauge Symmetries // The Constants of Physics / Ed. W. McCrea and M.J. Rees (London: Royal Society, 1983), p. 51; перепечатано в Philosophical Transactions of the Royal Society of London A310 (1983): 261.

[244] Wigner E.P.  The Limits of Science // Proceedings of the American Philosophical Society 94 (1950): 422. (На русском языке опубликована в книге: Вигнер Э.П.  Инвариантность и законы сохранения. Этюды о симметрии. М.: УРСС, 2002.)

[245] Redhead М.  Explanation.

[246] Nozick R.  Philosophical Explanation (Cambridge, Mass.: Harvard University Press, 1981), chap. 2.

[247] Psalms 19: 1 (версия короля Джеймса)[247][247] Псалтырь. Псалом 18. – Прим. ред.

.

[248] Hawking S.  A Brief History of Time (London: Bantam Books, 1988). (Рус. пер. Хокинг С. Краткая история времени. М.: Амфора, 2003); Ткefil J.  Reading the Mind of God (New York: Scribner, 1989) и Davies P.  The Mind of God: The Scientific Basis for a Rational World (New York: Simon & Schuster, 1992).

[249] Misner С.W.  // Cosmology, History, and Theology / Ed. W. Yourgrau and A.D. Breck (New York: Plenum Press, 1977), p. 97.

[250] Цит. пo Holton G.  // The Advancement of Science, and Its Burdens (Cambridge: Cambridge University Press, 1986), p. 91.

[251] Einstein A.  Festschrift fur Aunel Stadola (Zurich: Orell F’ussli Verlag, 1929), p. 126.

[252] П. Тиллих, выступление в университете Северной Каролины 1960, цит. по De Witt В.  Decoherence Without Complexity and Without an Arrow of Time (University of Texas, Center of Relativity: preprint, 1992).

[253] Это взято из неопубликованной стенограммы слушаний.

[254] Всем должно быть ясно, что обсуждая эти вещи, я говорю только о самом себе, и что в этой главе я игнорирую любые требования компетентности.

[255] Взято из интервью в «Нью-Йорк Таймс», апрель 25, 1929. Я благодарен А. Пайсу за эту цитату.

[256] Работы Галилея показали, что мы на Земле не должны чувствовать движения Земли вокруг Солнца. Кроме того, его открытие лун Юпитера стало демонстрацией Солнечной системы в миниатюре. Завершающее доказательство связано с открытием фаз Венеры, что никак не согласовывалось с предположением, что Венера и Солнце вращаются вокруг Земли.

[257] Обращаясь вокруг Земли вместо того, чтобы улететь по прямой в открытый космос, Луна за каждую секунду приобретает компоненту скорости, равную 0,1 см/с по направлению к Земле. Теория Ньютона объяснила, что это в 3 600 раз меньше, чем ускорение падающего яблока в саду Кембриджа, так как Луна в шестьдесят раз дальше от центра Земли, чем Кембридж, а ускорение за счет силы тяготения уменьшается обратно пропорционально квадрату расстояния.

[258] Perutz М.Е.  Erwin Schrodinger’s What Is Life? and Molecular Biology // Schrodinger: Centenary Celebration of a Polymath / Ed. C.W. Kilmeister (Cambridge: Cambridge University Press, 1987), p. 234.

[259] Я впервые услышал о профессоре Джонсоне, когда мой друг показал мне его статью «Эволюция как догма». См. A Monthly Journal of Religion and Public Life, October 1990, pp. 15–22.

[260] Gould S.  Impeaching a SelfAppointed Judge // Scientific American, July 1992, p. 118.

[261] Polkinghorne J.  Reason and Reality: The Relation Between Science and Theology (Philadelphia: Trinity Press International, 1991).

[262] Более подробно см. Levinson S.  Religious Language and the Public Square // Harvard Law Review 105 (1992): 2061; Midgley M.  Science as Salvation: A Modern Myth and Its Meaning (London: Routledge, 1992).

[263] Lightman A.  and Brawer R.  Origins: The Lives and Worlds of Modern Cosmologists (Cambridge, Mass.: Harvard University Press, 1990).

[264] Из стихотворения Мэтью Арнольда «Dover beach» («Дуврский берег»).

[265] Sontag S.  Piety Without Content // Against Interpretation and Other Essays (New York: Dell, 1961). (Рус. пер. Зонтаг С.  Против интерпретации. Сб. статей. М., 1988.)

[266] Trevor-Roper H.R.  The European Witch-Craze of the Sixteenth and Seventeenth Centuries, and Other Essays (New York: Harper & Row, 1969).

[267] Popper K.R.  The Open Society and Its Enemies (Princeton, N.J.: Princeton University Press, 1966), p. 244. (Рус. пер. Поппер K.P.  Открытое общество и его враги. М., 1992.)

[268] См. его Трактат о природе человека (1739).

[269] Bede . A History of the English Church and People / Trans. Leo Sherley-Price and rev. R.E. Latham (New York: Dorset Press, 1985), p. 127.

[270] Цит. по работе Science 221 (1983): 1040.

[271] Туннель установки ИЗАБЕЛЛА используется сейчас для релятивистского ускорителя тяжелых ионов, который будет использоваться для изучения столкновений тяжелых ионов с целью понять свойства ядерной материи, а не фундаментальные принципы физики элементарных частиц. Ожидается, что этот ускоритель будет готов в 1997 г.

[272] Это замечание применимо к неоднородностям галактического размера, но не значительно большим неоднородностям, следующим из измерений СОВЕ. Они настолько велики, что даже световая волна не успела бы их пересечь за первые триста тысяч лет после начала современного расширения Вселенной, и поэтому (независимо от того, состоят они их темной материи или нет) они не могли испытать существенного роста за это время.

[273] После того, как местом строительства было выбран округ Эллис, в спорах возник новый элемент – зазвучали обвинения со стороны разочарованных политиков из таких штатов, как Аризона, Колорадо и Иллинойс, что Техас выиграл соревнование в выборе места строительства в результате нечестного политического давления. Широко обсуждался тот факт, что выбор министерством энергетики штата Техас в качестве места строительства ССК был объявлен буквально через два дня после избрания президентом США губернатора Техаса Джорджа Буша. После того, как решение о месте строительства ССК было обнародовано, министр энергетики Херрингтон заявил, что специальная комиссия министерства, которая установила рейтинг семи «самых подходящих» мест, была изолирована от политического давления, что он сам не получал выводов комиссии до дня выборов президента, что специальная комиссия сочла место в Техасе безусловно наилучшим, и что только после этого он получил одобрение окончательного решения от президента Рейгана и вновь избранного президента Буша. Я вполне могу поверить, что процесс отбора мог бы быть ускорен так, чтобы объявить решение перед выборами, но тогда это, несомненно, вызвало бы обвинения в том, что момент объявления был выбран специально, чтобы повлиять на важный голос штата Техас. С другой стороны, даже если избрание Джорджа Буша никак не повлияло на выбор места, министерство энергетики, безусловно, было хорошо осведомлено о влиятельности членов Конгресса от Техаса и их полном одобрении ССК, так что можно было надеяться, что решение о месте строительства в Техасе улучшит шансы проекта ССК на получение финансирования от Конгресса. Если так, то это вряд ли следует рассматривать как скандал или как первый и последний случай, когда правительственное агентство занимается подобными расчетами. Во всяком случае, я могу засвидетельствовать, что подобные расчеты не играли никакой роли в выборе семи самых предпочтительных мест комитетом национальных академий, в который я входил. Наш комитет с самого начала рассматривал место в Техасе в качестве одного из главных претендентов. Частично это было связано с исключительно удачными геологическими условиями. Другим важным фактором было наличие крикливой оппозиции строительству ССК в нескольких других, входивших в список наилучших местах, в том числе в лаборатории им. Ферми в штате Иллинойс. В округе Эллис практически каждый житель был рад приветствовать строительство ССК.

[274] См., например, R. Darman, цит. по: Aldhous P.  Space Station Back on Track // Nature 351 (1991): 507.