Глава шестая

в которой читатель неожиданно попадает в абстрактный мир науки о пространстве, такой непохожей на добрую старую геометрию, щеголяющую в «пифагоровых штанах» и ловко жонглирующую кубами, цилиндрами, шарами и конусами, а также всевозможными усеченными пирамидами и многогранниками

 

Атаки, подтачивающие устои бесконечной вселенной, велись не только астрономами, но и математиками. Хотя ни те, ни другие вовсе не ставили перед собой столь неблагородной задачи… Пространство ньютоновской вселенной существовало независимо от материи. Под «материей» подразумевалось вещество, так или иначе распределенное в пространстве. Веществом занимались физика, астрономия и другие науки, призванные изучать «материальный» мир. Пространство являлось прерогативой математики и философии. Из задач человеческой практики возникла даже специальная отрасль математики — геометрия. Развиваясь, она из практической землемерной науки постепенно превратилась в абстрактную математическую теорию.

Все, что нас окружает в мире, все предметы имеют три измерения: длину, ширину и высоту. Каждый взрослый в состоянии убедиться в этом на глаз или на ощупь, как кому нравится. Автор подчеркнул «каждый взрослый», потому что у дитяти в грудном возрасте воспринимаемое пространство двухмерно. Оно — дитя не понимает, что такое «далеко» или «близко», тянется одинаково ручонками и к маминому носу, и к звездам… Однако постепенно психофизиологические механизмы и груз исторического опыта человечества, именуемый здравым смыслом, приводят ребенка к сознанию того, что мир, в котором он живет, трехмерен.

Но что такое исторический опыт человечества? Несколько тысячелетий сознательного накопления сведений. За это время человечество охватило пространственные расстояния от межатомных горизонтов до космологических просторов. Колоссально! Да, но только с точки зрения человека. Если же считать вселенную бесконечной, то охваченная нашими наблюдениями часть просто бесконечно мала. На каком же основании позволительно распространять столь ничтожный опыт на то, что не имеет меры?.. Почему бы не предположить, например, что наша вселенная одно-трехмерна? Ее модель напоминала бы сеть с узлами. Причем каждый узел — это трехмерная метагалактика, заключающая в себя мириады звездных островов. Посмотрите на чертеж. Так изобразил одно-трехмерную модель вселенной доктор философии Э. Кольман, в своей книжке «Четвертое измерение», А рядом модель двух- трехмерной вселенной — тоненькая двумерная пленка с трехмерными пузырьками — метагалактиками. Вы скажете — фантазия. Что ж, согласен. Модель ньютоновской вселенной — огромный пустой ящик — пространство, равномерно заполненное жидким бульоном материи. Чем она лучше?.. Тем, что ее легче себе представить, опираясь на опыт и здравый смысл?

  Модель вселенной

Эти два «кита», опыт и здравый смысл, позволили еще в глубокой древности построить теорию отвлеченно-абстрактного пространства и выявить его основные свойства. Собрал же крупицы мудрости и выковал из них «золотую розу» теории замечательный александрийский математик Эвклид.

Чему учил Эвклид

Эвклид рисовал свои чертежи на песке, на навощенных табличках, на папирусных свитках. О жизни его в архивах истории не осталось буквально ни строчки. Известно только, что жил он примерно в начале III века до нашей эры во времена первого царя из династии Птолемеев и что протекала его деятельность в Александрии. Сохранилась, правда, одна легенда. Однажды царь Птолемей, которому Эвклид преподавал основы математики, пожаловался на длинноты вступлений к науке. На что его учитель, запахнув тогу, заявил, что к геометрии нет «царской дороги». Путь к высотам науки один для всех смертных, и начинается он с простых понятий.

Тринадцать книг его «Начал», содержащие изложение планиметрии, стереометрии и некоторых вопросов теории чисел, в течение двух тысячелетий являются основами изучения математики. «В истории западного мира, — пишет математик Д. Л. Стройк, — «Начала» после библии, вероятно, наибольшее число раз изданная и более всего изучавшаяся книга. После изобретения книгопечатания появилось более тысячи изданий, а до того эта книга, преимущественно в рукописном виде, была основной при изучении геометрии. Большая часть нашей школьной геометрии заимствована часто буквально из первых шести книг «Начал», и традиция Эвклида до сих пор тяготеет над нашим элементарным обучением».

Как же строил Эвклид несокрушимое здание своей геометрии? В основание всей науки он вводит несколько главных положений-истин, по тем или иным причинам не требующих доказательств. Остроумные греческие философы, закаленные в спорах и наделенные скептическим умом, выбирали их очень осторожно. Они разделили подобные истины на аксиомы и постулаты. Аксиомами в те далекие времена называли утверждения, которые нельзя отрицать, не нарушая всех основ логического мышления. Говоря об аксиоме, греки начинали фразу со слов: «Очевидно, что…» И тем отбрасывали всякую возможность спора на этот счет.

Постулаты, в древнегреческом понимании, представляли собой конкретные утверждения, свойственные той или иной науке. Первая фраза постулата должна была начинаться словами «допустим, что…». Это также снимало возможность спора, но не налагало на выдвинутое положение критерия безусловности.

Такое очень важное и тонкое различие между аксиомой и постулатом со временем сгладилось и принесло неисчислимые беды и чистым философам, и представителям натуральной философии, но о том речь дальше.

Изложение геометрии в книгах Эвклида построено в виде системы определений, аксиом и постулатов, из которых логическим путем выводятся теоремы. В первых четырех книгах Эвклид рассматривает геометрию на плоскости. При этом в книге первой он формулирует пять основных требований, или допущений, на которых строит остальные выводы. Постулаты Эвклида настолько наглядны, настолько очевидны, что так и хочется назвать их аксиомами. Но мы уже предупреждены. И мы начеку. Да и сами постулаты при всей своей определенности точно взывают к бдительности. Смотрите сами. Эвклид пишет: «Нужно потребовать (помните, это эквивалентно словам «допустим, что…»):

1. Чтобы из каждой точки к каждой точке можно было провести прямую линию (и притом только одну).

2. И чтобы ограниченную прямую можно было непрерывно продолжить по прямой.

3. И чтобы из любого центра любым радиусом можно было описать окружность.

4. И чтобы все прямые углы были друг другу равны.

5. И чтобы всякий раз, как прямая, пересекая две прямые, образует с ними внутренние односторонние углы, составляющие вместе меньше двух прямых, эти прямые при неограниченном продолжении пересекались с той стороной, с которой эти углы составляют меньше двух прямых».

Даже не умудренный математикой читатель сразу заметит, что пятый постулат резко отличается от четырех первых. Он гораздо сложнее и больше похож на теорему, которую нужно доказывать. В пятом постулате нет и следа наглядности первых четырех, ведь здесь говорится о «неограниченном продолжении» прямых. А попробуйте-ка займитесь этим «неограниченным продолжением». Кто возмет на себя смелость сказать, что и в бесконечности параллельные прямые не сойдутся?.. То есть интуитивно, конечно, пятый постулат кажется бесспорным. Но интуиция диктуется опытом. Опыт же перед бесконечностью пас. Эвклид и сам скорее всего понимал, что с пятым постулатом не все обстоит чисто. Потому он и распределил изложение материала в своих книгах на две неравные части.

В первой сгруппированы теоремы, которые доказываются с помощью четырех начальных постулатов. Эта часть называется Абсолютной Геометрией. Во второй собраны теоремы, которые могут быть доказаны только при использовании пятого постулата. И эта вторая часть носит название собственно эвклидовой геометрии. Скорее всего некогда пятый постулат был теоремой. Однако ни одна из попыток доказать ее не увенчалась успехом. И тогда Эвклид включил упрямую теорему в число постулатов.

Математики так легко не примирились с решением Эвклида. «В области математики найдется мало вещей, — писал Карл Фридрих Гаусс, — о которых было бы написано так много, как о пробеле в начале геометрии при обосновании теории параллельных линий. Редко проходит год, в течение которого не появилась бы попытка восполнить этот пробел. И все же если мы хотим говорить честно и открыто, то нужно сказать, что, по существу, за 2000 лет мы не ушли в этом вопросе дальше, чем Эвклид».

От планиметрии — геометрии на плоскости — Эвклид переходит в последних трех книгах к геометрии в пространстве — стереометрии. Что же подразумевал Эвклид под пространством? В руках у вас, читатель, книга. Считайте ее плоскостью. А теперь поднимите ее плашмя над столом и опустите снова. Объем, который прошла книга при этом движении, и есть эвклидово пространство. Просто, правда? В этом пространстве должны быть удовлетворены все постулаты и аксиомы Эвклида, потому что они суть его свойства. Да и кому в голову придет усомниться, например, в том, что прямую линию можно продолжать в бесконечность. Или что пространство всюду обладает одними и теми же свойствами, что позволяет свободно передвигать любые фигуры в пространстве, не нарушая их внутренних связей.

  Чему учил Эвклид

От абстрактного геометрического понятия эвклидова пространства легко перейти к физическому пространству, в котором мы с вами живем и двигаемся. А приложив к миру Эвклида наглядные декартовы координаты, мы добиваемся полного слияния двух геометрий: геометрии Эвклида и геометрии физического мира.

Можно сказать даже, что слишком легко понятия геометрии: точка, линия, фигура, тело — отождествляются с наблюдаемыми объектами. И хотя геометрическая точка является идеализацией точки физической, так и кажется, что подобная идеализация никак не может нарушить основ геометрии. Геометрические объекты физического мира казались настолько тождественными объектам, с которыми имеет дело геометрия, что из этого кажущегося тождества выросла уверенность в том, что для описания пространства физического мира даже формально не может быть построено другой геометрии, кроме эвклидовой. То есть, что геометрия Эвклида — это и есть единственно возможная геометрия физического мира!

Внимательный читатель должен был заметить небольшой логический «кувырок», поставивший взаимоотношения геометрий Эвклида и реального мира в нашем представлении с ног на голову. Родившись и пребывая в своем первоначальном состоянии в качестве предисловия к физике, геометрия воспользовалась полным отвлечением пространственных форм и отношений от материального содержания и превратилась в отрасль чистой математики. Превратилась, чтобы затем подменить собой систему взглядов, описывающих реальный мир. Это было тем более опасно, что, основанная на аксиомах и постулатах, эвклидова геометрия, хоть и вытекала из опыта, проблемой согласования своих выводов с опытом не интересовалась.

Подобные метаморфозы в истории науки не новость. Метод Эвклида был очень похож на метод Аристотеля. Точно так же постулировал Аристотель целый ряд свойств сил и их действий на тела, находящиеся в движении. Понадобился Галилей, чтобы возник вопрос об опытной проверке законов Аристотеля. И тогда казавшаяся совершенной логическая схема стагирского философа и построенная на ее основе механика оказались просто неверными. Галилей с помощью опыта опроверг Аристотеля и открыл дорогу новым законам механики.

Нечто подобное предстояло совершить и с геометрией Эвклида. Но лишь в конце XIX столетия люди поняли, что положения геометрии, описывающие свойства физического пространства, тоже можно и нужно проверять на опыте, как это делают с любыми законами физики. И это было великим открытием.

Царь Мидас из страны математики

Карл Фридрих Гаусс родился в Брауншвейге, в семье зажиточного мастера-водопроводчика, 30 апреля 1777 года. Мальчик часто поражал взрослых своими способностями к счету. Сохранилась даже легенда, как однажды трехлетний Карл поправил отца, допустившего ошибку в расчетах с подсобниками. Можно предположить, что именно эти способности привели юного наследника почтенного ремесленника в стены Геттингенского университета. Здесь студент Карл Гаусс со всей основательностью принялся за изучение математики. Геометрия Эвклида поразила и покорила его. Как и многие другие до него и после, Гаусс отдал немало сил честолюбивому стремлению доказать пятый постулат. Правда, в отличие от других он скоро убедился в принципиальной невозможности его доказательства. Одновременно выяснилась удивительная вещь: пятый постулат был настолько не связан с остальными, что, заменив его другим, можно было построить стройную систему взглядов, может быть, несколько иных, чем эвклидовы, но так же непротиворечивых. Даже допущение ошибочности пятого постулата не входило в противоречие с остальными четырьмя… Нет, молодому Гауссу не удалось превратить пятый постулат Эвклида в теорему. Но эта попытка дала ему прекрасное знание основ геометрии и на всю жизнь привила будущему математику любовь к этой строгой науке.

Заботясь о своем авторитете первого математика мира, Гаусс в дальнейшем никогда больше не возвращался к пятому постулату. Но он на всю жизнь сохранил к нему интерес и ревнивое отношение к работам других математиков, касавшихся этой темы.

Со времен Эвклида верхом искусства геометров считалось умение построить с помощью только циркуля и линейки правильный пятиугольник, который потом, умножая его стороны, можно было бы превратить в десятиугольник, пятнадцатиугольник и т. д. Гаусс-студент открывает способ построения семнадцатиугольника. А через пять лет после окончания университета выпускает большой труд под названием «Арифметические исследования». Здесь, в последнем разделе своего сочинения, он приводит полностью разработанную теорию деления круга. Теперь математики могли строить любые многоугольники, не хвастаясь своим искусством.

В канун нового, XIX столетия, прямо в новогоднюю ночь, аббат ордена театинцев, основатель и директор астрономической обсерватории в Палермо, на острове Сицилия, Джузеппе Пиацци открыл первую малую планету в «пустом» промежутке между Марсом и Юпитером. В честь богини плодородия — покровительницы Сицилии — он назвал ее Церерой и написал о том в Миланскую и Берлинскую обсерватории. Неожиданно Пиацци заболел. Долгое время он был лишен возможности подходить к своему телескопу. Между тем на Европейском континенте бушевали наполеоновские войны. Италия была наводнена воюющими армиями, и письма астронома ползли черепашьими темпами. Когда же они наконец достигли адресатов, то, сколько ни всматривались астрономы в звездные россыпи, новооткрытой планеты нигде не было видно. Она вошла в соединение с Солнцем и безнадежно потерялась в его лучах. У Пиацци остались данные наблюдений движения беглянки всего лишь по небольшой дуге в несколько градусов. Сколько он ни бился над решением построения всей орбиты по этим скудным данным, ничего у него не получалось. Все положения, где должна была находиться планета после того, как она покинула район Солнца на небесной сфере, оказывались ложными. Церера была безнадежно потеряна, И вот тогда этим вопросом занялся Гаусс, малоизвестный приват-доцент Брауншвейгского университета. Он изобретает новый точный способ вычисления орбиты небесного тела всего по трем измерениям и указывает место, где должна находиться исчезнувшая планета. Новогодняя история получила достойное завершение. Цереру, по указаниям Гаусса, отыскали в последнюю ночь 1801 года. Имя Гаусса получило широкую известность.

Между тем должность приват-доцента начала тяготить математического гения. Она давала ему всего восемь талеров в месяц. Этого было достаточно, чтобы не умереть с голоду, но слишком мало, чтобы заниматься наукой, не думая о том, как свести концы с концами. Гаусс ищет выход. Петербургский академик Фусс, с которым молодой человек поддерживал переписку, предложил перебраться в Россию. Там он обещал Гауссу место астронома и директора обсерватории с квартирой и окладом в тысячу рублей в год, Фусс гарантировал Гауссу избрание в Действительные члены императорской академии и дальнейшее улучшение жизненных условий. Гаусс решил ехать. Случайно о его решении узнает эрцгерцог Брауншвейгский. Щедрым жестом он предлагает математику 400 талеров годового жалованья с тем условием, что тот не покинет родину. Тщательно взвесив все «за» и «против», практичный Гаусс остается в Брауншвейге.

В 1802 году вторую малую планету открыл близкий друг Гаусса, известный уже нам врач и астроном-любитель Генрих Вильгельм Матеус Ольберс. Он назвал ее Палладой в честь дочери Зевса — Афины, И снова Гаусс вычислил ее орбиту, пользуясь своим методом. Результаты этих исследований, обработанные со скрупулезной точностью, появились в 1809 году в сочинении «Теория движения небесных тел». Эта работа принесла молодому математику, всемирную славу. С 1807 года Гаусс — член Геттингенского ученого общества. В том же году он получает кафедру математики и астрономии в Геттингенском университете и до конца жизни не покидает Геттингена.

Лишь раз по настойчивому приглашению Александра Гумбольдта выезжает он в Берлин на съезд естествоиспытателей.

Германия тех лет представляла собой удивительное сборище без малого трехсот крохотных государств. И в каждом свой герцог. В каждом свои законы. В этих малюсеньких государствах, властители которых изо всех сил пыжились, чтобы походить на настоящих королей и императоров, царила на редкость затхлая атмосфера. Но при каждом дворе или дворике непременная Академия наук. Непременно «свои» гении, содержащиеся для забавы, для представительства, питающиеся от щедрот сюзерена.

Одни бунтовали, как Бетховен при дворе князя Лихновского в Вене. Другие лавировали, стремясь воплотить свои идеалы, не вступая в открытый конфликт с окружающей социальной средой: так поступал Гейне в Веймаре. Третьи ценили кормушку, страшась возможной свободы и неустроенности, боясь остаться без покровителя, без привычных условий для главного и единственного в жизни — для науки: таким был Гаусс. Математика была страстью Гаусса, наука — его жизнью.

  Царь Мидас из страны математики

Дублинский математик Корнелий Ланцош пишет: «Гаусс чем-то напоминал легендарного греческого царя Мидаса. Царь Мидас обращал в золото все, к чему прикасался. Многие открытия Гаусса берут свое начало от некоторых случайных вопросов, которые перед ним ставились. И хотя сами по себе эти вопросы были зачастую досадной нагрузкой, но, когда Гаусс брался за них с характерными для него тщательностью и аккуратностью, он создавал нечто исключительно важное».

Математика, астрономия, геодезия, физика — во всех этих отраслях науки Гаусс, начиная с небольшого частного вопроса, заканчивал тем, что блестяще решал фундаментальные задачи, продвигая науку дальше и дальше. Нет, не зря современники называли его первым математиком мира.

В 1820 году Гаусс получает указание от министра общественных дел Ганноверского княжества возглавить геодезическую съемку государства и составить подробную карту для межевания и точного определения границ земельных владений. «Гаусс отнюдь не пришел в восторг от своих новых обязанностей». Но он разработал специальный прибор — гелиотроп — для усовершенствования оптической сигнализации; изобрел новый способ наименьших квадратов для установления длин, координат, дуг и других величин в астрономии и геодезии. Заинтересовавшись формой земной поверхности, он занялся углублением общего метода исследования кривых поверхностей, И в конце концов, открыв в геометрии целое новое направление, создал математический аппарат, без которого не смогла бы возникнуть общая теория относительности. Потому что именно геометрические методы Гаусса явились отправной точкой в размышлениях Эйнштейна об общих системах отсчета.

А так как общая теория относительности — хлеб насущный современной космологии, то терпеливый читатель понимает необходимость ознакомиться с геометрическим открытием Гаусса поподробнее.

Занимаясь проблемой измерения кривых поверхностей, Гаусс первым попробовал рассмотреть их «внутренние», или «собственные», свойства, зависящие только от самих искривленных поверхностей. Он как бы попробовал проникнуть в психологию плоского двухмерного существа, живущего на такой поверхности. Этот новый, совершенно необычный взгляд означал фактически создание новой, «внутренней геометрии» поверхностей.

В гостях у плоскунов и плоскатиков

Основными элементами геометрии всегда являлись прямые линии и углы. Без них геометрию не построишь, как не придумаешь правил правописания без букв. Но можно ли говорить о существовании прямых линий, например, на искривленной плоскости? Конечно, нет! — скажет поверхностный читатель. А глубокомыслящий задумается. Но давайте спросим у самого обитателя расплющенного мира. Ведь мы договорились, что на искривленной поверхности живут плоские, как вырезанные из полиэтиленовой пленки, существа. Итак.

Вопрос. Есть ли в вашем искривленном мире прямые линии?

Ответ. А почему же нет? Если прямая — кратчайшее расстояние между двумя точками, то, двигаясь, или, по-вашему, «ползя», в одном направлении, разве мы не будем совершать движение по прямой?..

М-да, против этого, пожалуй, не возразишь. Разве не так же мы, обитатели сферической (то есть искривленной) земной поверхности, строим «прямые как стрела» дороги и определяем кратчайшие расстояния между двумя городами? Ну, а коли есть прямые линии на искривленной поверхности, то есть и углы, треугольники, окружности, эллипсы…

Короче говоря, обитатели кривого плоского мира вправе ожидать от своего «расплющенного Эвклида» построения науки, которая ничуть не хуже планиметрии.

Теперь представим себе, что эта искривленная поверхность замыкается в шар. Ее обитатели, если они достаточно малы по сравнению с радиусом шара, просто не замечают кривизны. Кстати, «кривизна» чрезвычайно важное геометрическое понятие. Кривизной называют величину, как раз обратную радиусу закругления поверхности в рассматриваемой точке. У шара кривизна во всех точках одинакова. После такого открытия грешно не попытаться в лучших традициях древних греков соорудить аксиому со стандартным началом, «Очевидно, что чем больше радиус, тем меньше кривизна!» Прекрасно!

Теперь вернемся к нашим «расплющенным» мыслителям, живущим на поверхности здоровенного шара, но не знающим этого. Их геометрия ничем не отличается от эвклидовой. Точно так же они станут утверждать, что прямые линии бесконечны, треугольники подобны, а параллельные никогда не пересекаются.

И вот приходим в этот плоский мир мы с вами. Нам тоже пришлось расплющиться. Вы не возражаете? Но все равно и в этом непривычном состоянии мы с вами гиганты мысли. Мы строим на поверхности шара, которую тамошние интеллектуалы именуют плоскостью, треугольник. И предлагаем измерить сумму его углов. Плоскуны-геометры меряют — вроде 180°. В пределах ошибки. Тогда мы растаскиваем, растягиваем стороны треугольника на полмира, в смысле на полшара. Плоскуны снова измеряют и обнаруживают… Ну мы-то, конечно, с самого начала знали, что сумма углов в криволинейном треугольнике не равна 180°, и потому не удивляемся этому результату.

  В гостях у плоскунов и плоскатиков

Итак, на поверхности сферы сумма углов треугольника оказывается больше двух прямых, больше 180°. Попробуем сделать еще одну проверку, на этот раз первого постулата: «Из каждой точки к каждой точке можно провести прямую линию (и притом только одну)». Но «прямыми» на сфере являются дуги больших кругов — меридианы. А таких, от полюса до полюса, например, можно провести бесчисленное количество. Опять промах.

Второй постулат: «и чтобы ограниченную прямую можно было непрерывно продолжать по прямой». Отправимся в кругосветное путешествие, держась все время строго одного направления. Мы объехали сферический мир и вернулись к следам своих мокасин… Это значит, что законы Эвклида для сферы неприемлемы. Шар требует другой, неэвклидовой геометрии.

Подобный пример в свое время заставил Гаусса крепко задуматься. Как же быть тогда с нашим собственным миром? Действительно ли правдоподобные, но совершенно бездоказательные постулаты Эвклида отражают объективную реальность? А может быть, истинные законы геометрии нашего физического мира совсем иные?.. Вот когда понадобилась впервые проверка геометрии опытом. Нет, нет, Карл Фридрих Гаусс вовсе не собирался взрывать систему Эвклида, как это сделал в свое время Галилей со взглядами Аристотеля. У Карла Фридриха был не тот характер. Но истине он служил честно. Истина же требовала проверки.

Потихоньку, воспользовавшись наличием в своем топографическом хозяйстве угломерных инструментов, Гаусс выбирает вершины трех гор, хорошо заметных на горизонте. То были Хохер-Хаген, Инзельсберг и знаменитый Брокен — согласно поверьям, излюбленное место шабаша ведьм. Вершины составили подходящий по величине треугольник. Гаусс измеряет его углы со всей доступной инструментам точностью. Измеряет, считает, снова измеряет. Нет! Никакого отклонения от 180° сумма углов треугольника не давала. Разочарование?

Конечно! Однако Гаусс никому о нем не говорит. Он не уверен в собственной интуиции и неоднократно в письмах к друзьям то выражает свое недоверие Эвклиду, то снова принимает его взгляды безоговорочно. В конце концов он все-таки отказался от постулатов, заменив их фундаментальными величинами, которые можно точно измерить в каждой точке поверхности, воспользовавшись для этого системой изобретенных им криволинейных (гауссовых) координат. Эти измерения сами по себе дают понятие о кривизне поверхности независимо от пространства, в котором эта поверхность находится. Ведь о форме поверхности мы судим, как правило, извне, держа ее в руках или перед глазами.

Так, лист бумаги, лежащий перед вами на столе, — плоскость. А рулон линолеума имеет цилиндрическую поверхность. А как мы убеждаемся в том, что Земля — шар? Когда в Ленинграде вы смотрите на ночное небо, Полярная звезда стоит высоко над головой. Но погрузитесь в самолет. Через три часа вы на берегу Черного моря. Темной южной ночью поищите свою знакомую Полярную звезду, и вы заметите, как сильно сместилась она к горизонту. На море есть и еще одна возможность ощутить округлость земного бока. Уходит от берега корабль. И чем дальше, тем глубже, кажется нам, погружается он в пучину. Сначала исчезает корпус, потом трубы и наконец мачты… Кругла Земля! Третье измерение позволяет нам зафиксировать этот факт из внешнего, окружающего нашу поверхность пространства. Эта кривизна так и называется внешней, и характеризуется она уже знакомым нам радиусом кривизны.

А как быть, если у нас нет никакой информации о внешнем пространстве? Помните, мы же с вами добровольно согласились расплющиться. Пожалуй, наряду с кривизной внешней должна существовать и кривизна внутренняя, характеризующая поверхность из ее собственных внутренних свойств. Конечно, эта характеристика не столь наглядна. Но получается она благодаря измерениям, производимым на самой поверхности.

Лучше же всего характеризовать кривизну любой поверхности так называемой полной, или гауссовой, кривизной. Тут мы подходим к замечательному открытию, которое совершил Гаусс, исследуя искривленные поверхности.

«Великолепная теорема» Гаусса

Давайте вспомним или познакомимся с тем, как обычно геометры характеризуют кривизну искривленной поверхности в окрестностях избранной точки М. Прежде всего они строят плоскость, касательную к поверхности в исследуемой точке, и восстанавливают перпендикуляр. Затем проводят через перпендикуляр множество секущих плоскостей. Каждая из них пересекает поверхность по какой-то кривой, которую вблизи точки М можно считать частью окружности большего или меньшего радиуса. И вот оказывается, что окружности самого большого и самого маленького радиусов лежат всегда во взаимно перпендикулярных плоскостях сечения. Геометры берут величины, обратные этим радиусам (их называют главными радиусами кривизны), и перемножают:

1/Rmax • 1/Rmin = K.

Получают, полную, или гауссову, кривизну.

  «Великолепная теорема» Гаусса

Конечно с точки зрения двухмерных жителей искривленной поверхности касательная плоскость, перпендикуляр к ней, секущие плоскости и все, что выходит за пределы двухмерного мира,- все это недоступно пониманию двухмерного разума, все это для него мираж, нереальность и фантастика. Как же быть?.. И вот Гаусс доказал, что полная кривизна может быть без всяких дополнительных построений выражена через результаты измерений на самой поверхности. Понимаете, независимо от внешнего, окружающего пространства! Это открытие получило название «великолепной теоремы».

Красиво, правда? Любили предки оформлять свои достижения. Любили и умели, нужно отдать им должное.

  «Великолепная теорема» Гаусса

Величие гауссовой теоремы заключается в том, что полная кривизна абсолютно характеризует поверхность в исследуемой точке. Она доступна жителям двухмерного мира и определяет ту геометрию, которую следует им применять. Плоскуны и плоскатики могут вообще не иметь понятия, что такое «кривизна» собственного мира. Но, получив путем измерений абстрактную величину гауссовой кривизны, равную нулю, они должны пользоваться самым простым типом геометрии — эвклидовой. Если же число К окажется на всей поверхности одинаковым и больше нуля, ряд постулатов Эвклида теряет смысл и нужно применять законы другой — сферической геометрии.

Вообще говоря, «внутренняя» и «внешняя» геометрий могут сильно отличаться друг от друга. Возьмем, например, три геометрические фигуры: плоскость, цилиндр и конус. Внешне выглядят они совсем по-разному. А внутренняя их суть?..

Давайте раздвоимся. Пусть одна наша половинка расплющится и перейдет жить на плоскость, ну хотя бы на лист этой книги. Вторая же часть пусть продолжает сидеть или лежать, держа уцелевшей рукой книгу перед уцелевшим глазом. А теперь аккуратно свернем лист в цилиндр или в конус-кулек и зададим своей расплющенной половинке несколько вопросов.

— Эй, двухмерный, как там у тебя с геометрией?

— Все так же. Как была эвклидовой, такой и осталась…

— Подожди, разве ты не чувствуешь изменений?

— Нет. Гауссова кривизна равна нулю по-прежнему.

И ведь он прав, наш двухмерный двойник. У плоского листа бумаги оба радиуса кривизны, R1 и R2, имеют бесконечно большое значение. Следовательно, произведение их обратных величин даст нуль. Но нуль можно получить, имея и один радиус бесконечным. Значит, и цилиндр и конус будут обладать внутренней геометрией, неотличимой от эвклидовой на плоскости.

Другое дело, если бы нам пришла в голову фантазия превратить, плоский лист бумаги в сферу. Впрочем, вряд ли это кому-либо удастся, не сминая листа в складки или не разрывая его поверхности. Сфера — поверхность совсем другого характера, чем плоскость, и потому ее внутренняя геометрия не такая, как у плоскости. И кривизна ее имеет положительное значение, а не равна нулю.

Фактически Гаусс заложил основы совсем новой геометрии, опирающейся на опыт, на измерения, а не на постулаты. Правда, его исследования касались лишь поверхностей двух измерений. Но это была тропа, которая должна была вывести математиков на широкую дорогу обобщений.

Коперник геометрии

«Чем Коперник был для Птолемея, тем был Лобачевский для Эвклида. Между Коперником и Лобачевским существует поучительная параллель. Коперник и Лобачевский — оба славяне по происхождению. Каждый из них произвел революцию в научных идеях, и значение каждой из этих революций одинаково велико. Причина громадного значения той и другой революции заключается в том, что они суть революции в нашем понимании космоса», — писал молодой, жизнерадостный, но уже неизлечимо больной чахоткой английский математик Вильям Клиффорд. Писал спустя едва ли двадцать лет после смерти великого русского геометра.

И февраля 1826 года в Казанском университете состоялось заседание физико-математического отделения, на котором слушался доклад профессора математики Николая Ивановича Лобачевского, посвященный доказательству «теоремы о параллельных». Коллеги без особой охоты сходились в этот ненастный февральский день на совещание.

В университете любили порывистого, безотказного Лобачевского, который всегда охотно откликался на просьбы товарищей. Кто не помнил, что именно Николай Иванович взялся читать математику на всех курсах вместо уехавшего в Дерпт (ныне Тарту) профессора Бартельса. А когда из отпуска не вернулся в Казань профессор физики Броннер, то Лобачевский принял на свои плечи и его курс, одновременно с заведованием физическим кабинетом и заботами о его оборудовании. Он замещал астронома Симонова, ушедшего в плавание с экспедицией Беллинсгаузена, и пекся о судьбе университетской обсерватории. Библиотека — любимое детище Лобачевского, особенно ее физико-математический раздел… Он декан отделения и едва ли не самый активный член строительного комитета, курирующего постройку главного корпуса университета. Непонятно, когда он успевает еще заниматься наукой.

Некоторое время тому назад Лобачевский передал совету отделения свое сочинение, озаглавленное «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных». Но ни профессора Симонов и Купфер, ни адъюнкт Брашман не спешили с отзывом. Более того, ходили слухи, что мемуар профессора Лобачевского недоступен пониманию нормального человека. Профессора заранее жалели коллегу, на которого нашло затмение… Но вот он на кафедре. Густые, темные, вечно перепутанные в беспорядке волосы, пронзительный взгляд глубоко посаженных серых глаз.

В университете Лобачевский в восемнадцать лет стал магистром. Три года спустя его раньше срока производят в адъюнкт-профессора, а еще через два года он получает кафедру чистой математики и должность профессора. В те годы люди рано стремились к зрелости. Двадцатилетний молодой человек без специальности, без образования, без дела твердо считался пустоцветом и оболтусом. Сто пятьдесят лет назад не могли возникнуть восторги по поводу «запоздалого инфантилизма» — столь модной в наше время проблемы. Конечно, жизнь наших современников стала длиннее. Но вряд ли срок, отпущенный природой на свершение великих дел, возрос так же пропорционально. Долгая старость — не просто время отдыха человека, и право на поучения не дает только седая борода. Мудрость, как и честь, копится смолоду, и счастлив и велик тот народ, чья молодость чтит своих стариков. Но каждую награду следует заслужить…

«Господа, — начал Лобачевский, — трудности понятий увеличиваются по мере их приближения к начальным истинам в природе… Эвклидовы «Начала», несмотря на все блистательные успехи наши в математике, сохранили до сих пор первобытные свои недостатки…»

Сколько пришлось ему передумать, прежде чем он отважился заявить об этом с трибуны, прежде чем в результате трудной и мучительной работы мысли открылся ему удивительный путь от попытки доказательства пятого постулата Эвклида к неведомому. Путь, который привел его к открытию нового мира с новой системой измерения — новой геометрией.

«…Изложение всех моих исследований в надлежащей связи потребовало бы слишком много места и представления совершенно в новом виде всей науки…»

Ход рассуждений докладчика действительно чрезвычайно сложен, хотя и строго логичен. Размышляя над возможностями доказательства пятого постулата Эвклида, Лобачевский подумал: а не попытаться ли идти от противного? Предположим, мы оставим четыре начальных постулата в неприкосновенности и отбросим пятый? Или еще лучше, отбросим пятый постулат и потребуем, что через точку, находящуюся вне прямой, можно провести не одну, а целый пучок прямых, параллельных данной? И на новой системе аксиом попытаемся построить новую геометрию… Очевидно, что труд сей должен привести к одному из двух:

либо, если пятый постулат является следствием первых четырех, новая система где-то придет к абсурду, так как строится она на предположении, противоречащем следствию;

либо, если логического противоречия в новой геометрии не окажется, это будет служить доказательством того, что пятый постулат совершенно не зависит от остальных.

Тогда новая система взглядов явится геометрией, описывающей некий воображаемый, отличный от Эвклидова, мир. Мир, в котором через точку, лежащую вне прямой, можно провести множество прямых, не пересекающихся с данной… Лобачевский все еще пробует пояснить ход своих мыслей и переходит к следствиям, вытекающим из эвклидовых постулатов.

«В новой геометрии два только предложения возможны — продолжает оратор, не обращая внимания на созревшее у слушателей отчетливое недоумение,- или сумма трех углов во всяком прямолинейном треугольнике равна двум прямым углам — это предположение составит обыкновенную геометрию; или во всяком прямолинейном треугольнике эта сумма менее двух прямых, и это последнее предположение служит основанием особой геометрии, которой я дал название «воображаемой геометрии».

Коллеги перешептываются, улыбаются, не понимая, зачем профессору Лобачевскому эта чушь, зачем понадобилось ниспровергать существующий порядок его величества здравого смысла. Эх, молодость, молодость… А ведь разумен, энергичен. Ну ничего, остепенится, оставит глупости…

Его даже не пытались понять. Впрочем, может быть, не могли?.. Может быть, перед нами обычная трагедия гения — человека, идущего впереди своей эпохи?.. Особенно нелепо звучал для математиков вывод Лобачевского о том, что в «воображаемой геометрии» угол треугольника зависел от длины его сторон… Это уже «не лезло ни в какие ворота». Разве что доказывало полную нелепость развиваемых взглядов. Ведь любая сторона треугольника — отрезок. Отрезок можно измерить. Можно дюймами, можно вершками, аршинами, верстами, наконец, метрами или километрами, если господину Лобачевскому так нравятся меры длины, введенные революционной Францией. А что такое угол? Отвлеченная величина, измеряемая градусами или радианами. Какая же связь может существовать между несоизмеримыми разнородными величинами?

  Коперник геометрии

Нет, в 1826 году идеи Лобачевского не нашли ни сочувствия, ни понимания у современников. Они не были наглядны! Вот если бы он начертил пресловутый треугольник с углами, сумма которых была меньше 180°, если бы он дал пощупать пальцами кусок плоскости, на которой реализуются четыре постулата Эвклида и пятый — Лобачевского, если бы они, современники, смогли провести на этой плоскости с отрицательной кривизной карандашом линию, которая действительно была бы кратчайшим расстоянием между двумя точками… Тогда они, может быть, поверили бы. Может быть… Потому что достаточно вспомнить первые телескопические открытия Галилея, чтобы представить себе, какую борьбу должно совершить новое, дабы получить признание. Впрочем, консерватизм — это не только отрицательное качество, присущее обществу. Консерватизм — это своего рода антибиотик, предохраняющий общество от незрелых или кратковременных идей. Действительно великие идеи все равно пробивают себе дорогу.

Год спустя после доклада на заседании отделения Николая Ивановича Лобачевского избрали ректором университета. И с тех пор он девятнадцать лет бессменно, четыре раза пройдя через перевыборы, стоял у кормила Казанского университета. Студенты, особенно математики, обожали своего ректора. За внешней хмуростью молодежь безошибочно угадывала большое и доброе сердце. Сколько анекдотов ходило о ректоре в студенческой среде.

Однажды в книжной лавке Николай Иванович обратил внимание на молоденького продавца, увлеченного чтением. Книжка показалась ему знакомой. Он подошел ближе. Действительно, в руках юноши был математический трактат. Сколько трудностей пришлось преодолеть Лобачевскому, прежде чем способный юноша И. Больцани, так звали продавца, поступил в университет. Ректор не ошибся. Молодой человек с блеском окончил курс обучения и стал профессором физики Казанского университета. Причем случай, с Больцани был далеко не единственным. Ректор много помогал питомцам своего университета, не требуя ни наград, ни благодарностей.

В 1829 году основные результаты работы Лобачевского появились в «Казанском вестнике». Опубликование не принесло Николаю Ивановичу радости. Теперь над ним открыто смеялись уже не только коллеги по Казанскому университету. Петербургская академия устами уважаемого своего члена академика Остроградского дала отрицательный отзыв его работе. Говорят, почтенный академик так выразился о казанском профессоре: «Лобачевский — недурной математик, но, если надобно показать ухо, он непременно покажет его сзади, а не спереди».

Лобачевский не сдается. Он пишет статьи на немецком, французском языках, популяризируя взгляды неэвклидовой геометрии. Одиноким гигантом идет он к цели, которая была видна лишь ему одному. Идет, опустив забрало, чтобы стрелы, пускаемые в него лилипутами, по выражению одного из учеников, не уязвляли.

Но стрелы уязвляли. Ведь и гений — человек! Из той же плоти и крови. Что поделать, если глаза его зорче, чем у остальных людей. Если разум могущественнее.

Общество, в котором жил Лобачевский, заставляло жестоко расплачиваться своих членов, не желающих подходить под стандарт. Не поняли окружающие и талантливого венгерского математика Яноша Больяи, пришедшего некоторое время спустя к взглядам, аналогичным взглядам Лобачевского. Некоторые социологи сегодня считают, что в этом находит выражение закон самосохранения общества. Гений — всегда протест. Нельзя сделать новый шаг, не разметав устоев условностей, накопленных обществом. «Воображаемая геометрия» была вызовом здравому смыслу. И ощетинившийся обыватель принял бой. В реакционном журнале «Сын Отечества», который редактировал печальной памяти Ф. Булгарин, появляется издевательская анонимная рецензия… «Воображаемая геометрия» Лобачевского раздражала не только математиков.

Вспомним эпоху. Мало того, что постулаты Эвклида почитались священными и неприкосновенными истинами. В философии царили взгляды Иммануила Канта, отошедшего от материализма молодости. Кант считал, что пространство и время не являются объективно-реальными, не существуют в мире «вещей в себе». По его мнению, пространство и время не более чем формы чувственного созерцания. Так сказать, это формы, упорядочивающие любые ощущения, получаемые от реального мира. Таким образом, не принадлежа к объективному миру, существующему независимо от человека, пространство и время являются лишь созданиями человеческого разума. А следовательно, и законы геометрии люди могут устанавливать не из опыта, а исходя из собственных представлений. Представления же человека о пространстве зафиксированы непоколебимыми постулатами Эвклида. Подобный ход рассуждений привел философа к выводу о непреложности законов геометрии и абсолютном характере пространства и времени.

Лобачевский до конца жизни стоял на материалистических позициях, считая, что только опыт может служить критерием истинности любой геометрии. «Спрашивайте природу! Она хранит все истины и на вопросы ваши будет отвечать непременно и удовлетворительно»,- говорил он в своей ректорской речи о важнейших предметах воспитания.

Но предполагал ли сам Лобачевский, что его «воображаемая геометрия» не просто логически непротиворечива, но действительно более правильно описывает пространство окружающего мира? Да! Тысячу раз да! Николай Иванович был убежден, что люди не могут навязывать природе законы геометрии. И потому он отрицал взгляды Канта. Как и Гаусс, Лобачевский пытался на практике измерять сумму углов треугольника. Он понимал, что истинность его геометрии для реального пространства может быть доказана лишь при измерениях очень больших расстояний, И Лобачевский строит треугольник с вершинами на Земле, Солнце и Сириусе и, пользуясь известными в его время астрономическими данными параллаксов звезд, пытается вычислить сумму его углов.

Увы, точность угломерных инструментов в его время была недостаточной, а следовательно, и значения параллаксов — приближенными. Рассчитанное отклонение суммы углов от 180° лежало в пределах ошибки измерений. Но отрицательный результат не обескуражил великого геометра. Он понимал, что неудача связана с несовершенством приборов и с тем, что выбранный треугольник был еще слишком мал…

За год до своей смерти слепой Лобачевский продиктовал по-французски свое последнее сочинение «Пангеометрию». Эвклидова геометрия не отрицалась «воображаемой геометрией», она просто являлась ее наиболее простым частным, или, если угодно, предельным случаем, когда гауссова кривизна (она отрицательная в гиперболической геометрии Лобачевского) становится равной нулю.

История последовательного расширения геометрии, идущая от пятого постулата Эвклида до геометрии Лобачевского и Больяи и дальше к Риману и Эйнштейну, является серьезным предостережением тем, кто, занимаясь вопросами космологии, слишком легко экстраполирует то, что он знает о «здесь» и «сейчас», на то, что лежит и происходит «там» и «тогда». Вряд ли стоит, изучив геометрию собственной комнаты, экстраполировать ее выводы на всю вселенную вообще.

Реальное строительство «воображаемого мира»

И все-таки Лобачевский до конца жизни не был удовлетворен результатами своей работы. Его мучило сознание ее незавершенности, отсутствие доказательства того, что «воображаемая геометрия» принципиально не может привести к абсурду. То есть он-то не сомневался в ее правильности, но вот окружающие… Ах, если бы ему, начертив воображаемые линии и фигуры, написать на чертеже одно-единственное слово: «Смотри!» Когда-то в древности это слово, поставленное на чертеже, заменяло доказательство… Увы, подобного «абсолютного доказательства» Николай Иванович так и не нашел.

В 1868 году, всего 12 лет спустя после смерти великого русского геометра, итальянский математик Эудженио Бельтрами опубликовал скромный мемуар «Опыт интерпретации неэвклидовой геометрии». Мемуар, который грохотом своего взрыва (его сравнивали с бомбой) разметал всех скептиков, всех тех, кто не верил в «воображаемую геометрию» Лобачевского. Мемуар, которого так недоставало при жизни Николая Ивановича…

Профессор математики Бельтрами некоторое время занимался картографией, для чего изучал способы отображения искривленной поверхности Земли на плоском листе бумаги. При этом ему пришлось столкнуться с весьма малоизученным вопросом о поверхности постоянной отрицательной кривизны — сферы наоборот, или псевдосферы. Когда-то, в конце прошедшего XVII столетия, о «мнимой сфере» говорил и писал Иоганн Ламберт — математик, физик, астроном и философ, со взглядами которого мы уже знакомы. Однако вряд ли Бельтрами знал о работах Ламберта. Рассмотрев большой класс поверхностей с постоянной отрицательной кривизной, Бельтрами умудрился построить их. Любознательный читатель может увидеть разновидность такой поверхности на нашем рисунке. Она похожа на седло. Самым же замечательным оказалось то, что геометрия на таких поверхностях была геометрией Лобачевского!

  Реальное строительство «воображаемого мира»

Вот когда пришло прозрение для всех неверующих. Вот когда Бельтрами смог воскликнуть столь желанное «смотри» и указать на чертеж. Псевдосфера-поверхность, находящаяся в привычном эвклидовом пространстве, являлась пресловутой «воображаемой» плоскостью Лобачевского. Но если такая плоскость (или двухмерное пространство) существует, то и ее геометрия не может быть ложной.

Мемуар Бельтрами совершил настоящий переворот. Имя Лобачевского озарилось сиянием славы. Увы, посмертно.

К сожалению, нарисовать или представить наглядно трехмерное пространство, подчиняющееся аксиомам геометрии Лобачевского, невозможно. У автора не хватает фантазии даже на аналогии. А отсутствие таковых в специальной литературе не позволяет прибегнуть к заимствованию. Придется воспользоваться единственным выходом — логикой…

Двухмерное пространство нулевой кривизны — плоскость. Та же нулевая величина кривизны определяет и эвклидово пространство, отличающееся от плоскости лишь наличием еще одного измерения.

Двухмерное пространство отрицательной кривизны — плоскость Лобачевского. Та же отрицательная величина кривизны определяет и неэвклидово пространство Лобачевского, отличающееся от плоскости Лобачевского лишь наличием еще одного измерения. Представить себе его наглядно — трудно, но математически оно описывается безукоризненно. Кривизну пространства можно измерить опытным путем. И тогда в пространстве отрицательной кривизны сумма углов треугольника будет зависеть от величины его сторон и составлять меньше 180°. Через точку, лежащую вне «прямой», можно будет провести не одну, а целый пучок «прямых», не пересекающихся с данной, и так далее и тому подобное. Все так, как предсказывал еще в 1826 году Николай Иванович Лобачевский на заседании физико-математического отделения Казанского университета.

Мемуар Бельтрами возродил интерес к неэвклидовой геометрии. Появляется множество работ, у псевдосфер обнаруживаются некоторые особенности, которыми плоскость Лобачевского не обладает. Математики предлагают другие модели и другие интерпретации не только плоскости, но и пространства Лобачевского. Об одной из них, забегая по времени вперед, автор собирается поведать.

Представим себе поезд, мчащийся по рельсам, Вдоль состава, в направлении движения в вагон-ресторан, идет пассажир. Чему равна его скорость относительно пролетающих за окнами полустанков? Все просто — сумме скоростей поезда и его движения вдоль вагона.

На обратном пути его движение уже не столь прямолинейно. Пошатываясь, он двигается под разными углами к направлению движения поезда. Теперь его скорость относительно тех же полустанков равна разности скоростей. Но не просто от скорости поезда в 120 км/час нужно отнять 2 км/час, которые он преодолевает, добираясь до своего купе. Нет, полная скорость определится как векторная разность, А сложение и вычитание векторов производится по правилу параллелограмма.

Мы вспоминаем о Пифагоре и приходим к мысли, что законы сложения скоростей подчиняются правилам эвклидовой геометрии. Или, как принято говорить среди специалистов, геометрия пространства скоростей — эвклидова. Впрочем, такое заявление — спекуляция чистой воды. Решить, какой геометрией является геометрия пространства скоростей, должен опыт. И вот опыт-то и обнаружил в пространстве скоростей первое противоречие со свойствами эвклидовой геометрии. Случилось это так.

В 1877 году американские физики Майкельсон и Морли поставили эксперимент, который обещал просветить физику в отношении противоречивых свойств мирового эфира. Автору пока не хотелось бы вдаваться в подробности опыта и задач, которые ставили перед собой экспериментаторы. Это увело бы повествование слишком далеко в сторону. Сейчас нам важно то, что в опыте сравнивалась скорость света Солнца в двух направлениях: с востока на запад — вдоль и с севера на юг — поперек движения Земли по орбите.

Сумма двух векторов, совпадающих по направлению, всегда больше суммы тех же векторов, направленных под углом друг к другу. И потому Майкельсон и Морли ожидали, что скорость света в сумме со скоростью движения Земли по разным направлениям даст разные величины. Каково же было их изумление, когда оказалось, что, с чем бы ни складывалась скорость света, она всегда остается одной той же.

Значит, законы Эвклида для сложения скоростей не годятся! Значит, геометрия пространства скоростей неэвклидова. Забегая еще вперед, скажем, что в 1908 году немецкий математик Клейн обнаружил, что геометрия скоростей в точности совпадает с геометрией Лобачевского. «Из всех неэвклидовых геометрий, — пишет Я. А. Смородинский, — геометрия Лобачевского оказалась самой реальной, в то время как «реальная» эвклидова оказалась лишь приближенной моделью».

Удивительные пространства Георга Фридриха Бернгарда Римана

Но продолжим историю конструирования новых миров, начатую нашим великим соотечественником.

Осенью 1853 года на математический факультет Геттингенского университета никому не известный доктор наук Риман подал конкурсную работу на соискание должности приват-доцента. По существующим правилам, кандидат должен был предложить еще три темы для пробной лекции. Глава факультета утверждал одну из них, и после прочтения лекции кандидатом совет окончательно решал вопрос о пригодности соискателя к преподавательской работе.

В Геттингене математический факультет возглавлял Гаусс. Он знал Римана еще по докторской диссертации. И существует мнение, что побаивался гения молодого человека, видя в нем равного себе… Риман представил на рассмотрение три темы. Две из них не вызывали ни у кого ни малейшего сомнения. Третья же, посвященная основам геометрии, была абсолютно «темной лошадкой». Впрочем, Риман и не собирался выбирать ее в качестве темы пробной лекции. Обычно руководитель факультета утверждал самую первую тему из представленного списка, и на этом дело заканчивалось. Гаусс избрал третью.

Известный немецкий математик Вебер пишет: «Гаусс не без умысла выбрал именно данную тему из трех предложенных Риманом. Он сам признавался, что ему страстно хотелось услышать, как такой молодой человек сумеет найти выход из столь трудной игры».

Риману понадобилось почти полгода для окончания работы над вопросами, лишь намеченными названием темы. И вот наконец «Геттингенский Колосс» назначает заседание коллегии…

Лекция Римана называлась «О гипотезах, лежащих в основании геометрии». Докладчик рассматривал геометрию в наиболее обобщенном виде, как учение о непрерывных многообразиях не только привычных нам трех измерений, но и любых других n измерений. Если в таких многообразиях определено или задано расстояние между бесконечно близкими их элементами, то есть известна метрика, то Риман называл такие многообразия пространствами, характеризуя их свойства кривизной.

Здесь, пожалуй, уместно немножно отступить в прошлое. Мысли о возможности существования у пространства не трех, а четырех измерений появились в математике очень давно. Историки отыскивают их еще во времена Диофанта, в 250 году до нашей эры. В более отчетливой форме высказывает ее Абу-л-Вафа Мухаммед ибн Мухаммед ал-Бузджани, уроженец Хоросана, работавший в X веке при дворе Бундов в Багдаде. Затем время от времени идеи о возможности обобщения пространственного измерения с трехмерного на четырехмерное и больше возникали у некоторых европейских математиков, вызывая недоверие у окружающих. Так было, пока в 1788 году французский математик Даламбер не присоединил к пространственным координатам х, у и z четвертую координату — время t. Правда, эта последняя не пользовалась равными правами со всеми остальными. Если в пространстве можно двигаться в любом направлении, то дорога времени имеет знак одностороннего движения: от прошлого к настоящему ив будущее. Но не наоборот, дабы не нарушать принципа причинности, на котором основан мир. Тем не менее после Даламбера идея четвертого измерения пространства получила развитие в работах многих математиков. А затем пришла пора и не только четырехмерного, но и пяти-, и шести-, и вообще n-мерных пространств.

Дотошного читателя может заинтересовать вопрос: кому и зачем могут понадобиться подобные фантастические, непредставимые наглядно построения абстрактной математики? Дело в том, что отношения, установленные многомерной геометрией, могут истолковываться не обязательно как пространственные, а как совсем другие отношения между объектами, связанными законами многомерья. Один из возможных примеров приводит Э. Кальман в книге «Четвертое измерение».

  Удивительные пространства Георга Фридриха Бернгарда Римана

Представьте себе, например, облачко газа, состоящее из n молекул. Каждая молекула этого газа в любой момент времени занимает некое положение в пространстве, определяемое тремя координатами. Но, кроме того, каждая молекула обладает еще определенным импульсом (равным произведению массы на мгновенную скорость). Импульс же имеет тоже три слагаемых, три проекции на оси координат. Таким образом, для определения состояния материальной точки — молекулы потребуется шесть характеризующих ее величин. Иначе говоря, движение каждой-молекулы можно теперь описать как движение точки в щестимерном пространстве. А изменение состояния всей системы из n молекул — как движение некой материальной точки в 6n-мерном фазовом пространстве. Причем линия траектории этого движения, называемая «фазовой траекторией», будет описывать изменение состояния всей системы газовых молекул. Такой метод многомерного фазового пространства применяется в различных науках: в механике и термодинамике, в физической химии и квантовой механике.

Риман изложил в своей лекции принципы многомерной геометрии в наиболее обобщенном виде. Он положил в основу своих исследований гауссовский элемент длины, то есть бесконечно малое расстояние между двумя точками. Некогда эта идея позволила Гауссу построить внутреннюю геометрию искривленной поверхности. На этом Гаусс остановился. Риман же перенес этот метод, эту идею с поверхности, или иначе с пространства двух измерений, на пространства трех и более измерений, обобщив и построив новые удивительные геометрии удивительных миров.

«Я поставил перед собой задачу сконструировать понятие многократно протяженной величины», — говорил Риман и набрасывал перед слушателями причудливые контуры «гиперпространств». Он рассуждает, что ежели могут существовать разные поверхности, то есть двухмерные пространства — плоские, эллиптические или такие поверхности, как плоскость Лобачевского, характеризующиеся различной по знаку и по величине гауссовой кривизной, то так же могут существовать и трехмерные или трижды протяженные величины и n-мерные. Причем в свете этих обобщений геометрия Эвклида и геометрия постоянной отрицательной кривизны Лобачевского, так же как и геометрия пространств постоянной положительной кривизны, которую мы теперь называем геометрией Римана, являются лишь частными случаями. Рассматривая вопрос о пространстве положительной кривизны, Риман распространил на него все свойства сферической поверхности. Так же как на сфере «прямые» линии не могут продолжаться бесконечно, потому что замкнуты сами на себя, в сферическом пространстве «прямая» линия должна быть замкнутой.

Сегодня можно предложить такой пример: обладай наше пространство положительной кривизной, луч света или космический корабль, посланные с Земли по прямой, через n лет непременно бы возвратились в исходную точку. А будь эта кривизна такой же большой, как в фантастических рассказах, человек всегда видел бы перед собой собственный затылок…

Получалось, что сферическое пространство должно быть конечно и безгранично, как конечна и безгранична поверхность любого шара. Да, привыкнув к бесконечности пространства Эвклида, такую конструкцию представить себе было трудно даже мысленно.

Гаусс был потрясен глубиной мысли Римана. Кандидат был принят на службу и через три года занял должность профессора.

Тридцать один год исполнилось сыну бедного сельского пастора из Брезеленце, когда он впервые получил возможность думать только о науке.

Содержание пробной лекции не было напечатано. Риман не стремился к публикациям. Тем более этой работы, которая, как он видел сам, была доступна весьма ограниченному кругу людей. Высказав в общем виде свои идеи, он больше не возвращается к ним. Он много работает. Пишет несколько блестящих математических мемуаров. Берлинская и Баварская академии наук избирают его своим членом. Затем следует признание и со стороны Парижской академии и Лондонского королевского научного общества… Но в разгар славы на тридцать девятом году жизни «профессиональный» недуг бедняков и интеллигентов XIX столетия — чахотка обрушивается на него. Теперь у Римана есть средства, и он уезжает в Италию. Но год, проведенный под голубым южным небом, уже не в силах ничего изменить. В сорок лет второй, после Гаусса, немецкий математик умер.