Глава 3. Великое открытие

С самого момента открытия Эрстедом влияния электрического тока на магнитную стрелку исследователей стала преследовать мысль: «А нельзя ли решить и обратную задачу: превратить магнетизм в электричество?» Во Франции над этой задачей ломали голову Ампер и Араго, в Швейцарии — профессор механики Женевской Академии Жан Даниель Колладон, в Америке — молодой физик Джозеф Генри, известный как создатель одного из самых сильных электромагнитов в мире. В Англии над этой же проблемой бился Фарадей.

Ампер первым предположил, а потом и доказал, что вокруг проводника с током образуется магнитное поле. Так он объяснил причину эффекта, обнаруженного Эрстедом. Исследователи сразу подумали: если постоянный ток в проводнике наводит постоянное магнитное поле, то почему бы постоянному магнитному полю обыкновенного подковообразного магнита не навести в рядом лежащем проводнике постоянный ток? Надо только найти правильное расположение того и другого и подобрать достаточно сильный магнит…

Сегодня, пожалуй, каждый знает, что, будь это именно так, мы получили бы вечный двигатель, работающий без потребления энергии. А это абсурдно. Из ничего ничего и не бывает. Но это знаем мы с вами сто пятьдесят лет спустя. А тогда закон сохранения энергии казался не столь уж безоговорочным.

Установить в наши дни, кто первым заметил эффект наведения тока в проводнике магнитным полем, довольно трудно. Рассказывают, что Колладон, намотав две обмотки на один каркас и включив во вторую гальванометр, заметил, что стрелка прибора странно дергается при включении в первичную обмотку электрической батареи. «Может быть, что‑то трясет прибор?» — подумал Колладон. Он не зря считался искушенным экспериментатором. Швейцарский профессор отнес гальванометр в другую комнату. Теперь, замкнув рубильник, он вынужден был ходить из одного помещения в другое. И когда добирался до прибора, стрелка того всегда стояла на нуле.

Некоторые историки уверяют, что первым, кто заметил, как при движении магнита возле проводника в проволоке появляется электрический ток, был Джозеф Генри. Он даже собирался написать об этом явлении статью. Да все откладывал. Дело в том, что как раз в это время Генри вел переговоры с Принстонским колледжем, где собирался занять место профессора физики, и упустил время. В Америку пришел журнал со статьей Фарадея.

Майкл Фарадей был не только веселым и жизнерадостным человеком. Он поражал окружающих своей аккуратностью. Результаты каждого опыта он подробно записывал в дневник. Еще в 1822 году в его дневнике появилась фраза: «Превратить магнетизм в электричество». С тех пор Фарадей не раз возвращался к этой «мысли. Очевидно, он знал, что проблемой интересуются и другие экспериментаторы, и потому с 1831 года работал как одержимый. Каждое утро в одно и то же время он являлся в лабораторию. Его ассистент Андерсон спрашивал: «Будем ли мы сегодня работать, мистер Фарадей?» — и, получив неизменно утвердительный ответ, отправлялся готовить инструменты и приборы.

Он был занятным человеком, этот отставной сержант артиллерии Андерсон. Не раз, ухмыляясь, заявлял вовсеуслышание, что во время Фарадеевых лекций всю работу делает он, Андерсон, Фарадей же калякает… И тем не менее профессор Фарадей относился к своему помощнику с неизменным уважением: «Он помогал мне во всех опытах, которые я делал, и я ему много обязан и благодарен за его заботливость, невозмутимость, пунктуальность и добросовестность, с которыми он выполнял все возложенные на него поручения». Почти сорок лет Андерсон был помощником ученого, его товарищем, коллегой, а временами — заботливой «нянькой» и строгой «матушкой‑наставницей».

Очень вспыльчивый по натуре, Фарадей умел быстро овладевать собой и легко укрощал свой характер. Известный физик Джон Тиндаль, многие годы друживший с Фарадеем, писал о качествах характера ученого: «Самым выдающимся из них была любовь к порядку. Самые запутанные и сложные вещи в его руках располагались гармонически. Кроме того, в прилежании к труду он выказывал немецкое упрямство. Это была порывистая натура, но каждый импульс давал силу, не позволявшую ни шагу отступить назад. Если в минуты увлечения он решался на что‑нибудь, то этому решению оставался верен и в минуты спокойствия». Наверное потому, поставив перед собой задачу о «превращении магнетизма в электричество», он девять лет спустя все‑таки решил ее.

В то утро 29 августа 1831 года Фарадей, как и раньше, включил батарею в приготовленную Андерсоном катушку и зафиксировал толчок, который испытала стрелка гальванометра, включенного во вторичную обмотку. Толчок — и снова стрелка на нуле. При выключении то же самое. Только теперь стрелка отклоняется при толчке в другую сторону. В чем тут дело? Вместе с Андерсоном он тщательно проверил установку. Но никаких причин для странного поведения стрелки не обнаружил. Тогда он решил изменить условия опыта. Заменил батарею заряженной лейденской банкой. А обмотки Андерсон намотал на кольцо из мягкого железа. Фарадей убеждается в том, что при наличии железного сердечника толчки стрелки гораздо сильнее. Он снова и снова изменяет условия экспериментов и постепенно приходит к определенному выводу.

17 октября 1831 года он записывает в дневнике: «Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 и 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».

Теперь Фарадей начинал понимать механизм обнаруженного явления. Понятными становились и многолетние неудачи в попытках получения тока от неподвижного магнита. Причина наведения индукции тока во вторичной обмотке заключается в движении магнита. Именно в движении! Он бросается к дневнику: «Электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Это решение! Полное решение задачи, поставленной десять лет тому назад. Андерсон с неодобрением смотрит, как его сорокалетний шеф — вы подумайте, такой солидный человек! — пляшет в лаборатории нечто, напоминающее зажигательную ирландскую джигу.

Железное кольцо с двумя обмотками явилось прообразом будущих трансформаторов, без которых электрификация в нашу эпоху вряд ли была бы возможна. Давайте забежим немного вперед к поясним значение этого изобретения.

Обычно на мощных электростанциях переменный ток вырабатывается при напряжении не более 22 тысяч вольт. Но для передачи на большие расстояния такое напряжение недостаточно, потому что, чем оно выше, тем меньше потери в проводах линии электропередач. Значит, напряжение нужно повысить. Это и осуществляется с помощью трансформаторов.

Однако потребители электрической энергии могут пользоваться ею только при пониженном напряжении. Это связано и с трудностями изоляции, и с безопасностью людей. После ЛЭП нужны снова трансформаторы, только теперь не повышающие, как на выходе с электростанции, а наоборот, понижающие. С их помощью напряжение электрического тока преобразуется в обычное для нас 127, 220 и 380 вольт.

Напав на верный след, Фарадей форсирует работу. Его эксперименты становятся одни удачнее другого. Теперь мысль ученого работает уже в ином направлении: «Если движение магнита возле проводника может рождать электричество, то и движение проводника возле магнита должно делать то же. А коли так, то нельзя ли из обыкновенного магнита и мотка проволоки соорудить новый источник электричества?» Теперь он вместе с Андерсоном устанавливает между полюсами большого магнита Королевского общества вращающийся медный диск. Два скользящих контакта соединены с гальванометром. Отставной сержант крутит ручку, и гальванометр показывает наличие электрического тока. Фарадей счастлив.

28 октября он записывает в дневнике: «…заставил медный диск вращаться между полюсами большого подковообразного магнита Королевского общества. Ось и точка на краю диска были соединены с гальванометром. Стрелка гальванометра движется при вращении диска…»

Так была создана первая в мире динамо‑машина.

Затем наступило, как говорится, «время собирать камни». Все результаты следовало обдумать и сделать надлежащие выводы. Это было очень нелегко. Не существовало в науке ни ясной физической картины явления, ни терминологии. Никто из современников Фарадея и представления не имел о сущности электромагнитных явлений. Все это нужно было создавать впервые. Ученый пытается понять, что же происходит между полюсами магнита. Почему свойства пространства при наличии в нем магнитных полюсов так резко изменяются по сравнению со свойствами того же пространства при отсутствии в нем магнита? Он снова и снова насыпает железные опилки на лист бумаги, помещает лист над полюсами магнита и смотрит на линии, по которым сгущаются опилки в межполюсном пространстве. Именно по этим направлениям действуют магнитные силы. Не являются ли обозначенные опилками линии реальными силовыми линиями, протянувшимися от одного полюса до другого? Он никогда не верил в то, что силы могут действовать через пустоту, на расстоянии, не передаваясь от одной точки к другой.

И Фарадей формулирует закон — Великий Закон электромагнитной индукции. «Явление возникновения в замкнутом проводнике электрического тока при пересечении этим проводником силовых линий магнитного поля называют электромагнитной индукцией» — так звучит этот закон сегодня. Конечно, Фарадей еще не знал такого понятия, как «поле сил». Для создания концепции электромагнитного поля науке понадобится гений Максвелла. Да и после него ученый мир не сразу признает концепцию Максвелла и закон Фарадея. Сколько было истрачено сил понапрасну в стремлении обойти фарадеевский закон, сколько не состоялось изобретений… Например, еще в начале нашего века возникло предложение измерять скорость морских судов по величине электродвижущей силы, которая должна наводиться на натянутом от борта к борту проводнике во время хода корабля. Однако, сколько ни бились изобретатели, ничего у них не получалось. А почему? Не зря в современной формулировке закона Фарадея стоят слова: «в замкнутом проводнике».

Такие же трудности встретились и при определении электродвижущей силы в обмотке, заложенной в паз якоря электрической машины. По идее ЭДС в пазу должна быть совсем незначительной, поскольку магнитная индукция там ничтожно мала. А на опыте получалась величина значительно большая предполагаемой…

Со временем идеи Фарадея стали надежным основанием науки. Вся современная электротехника зиждется на законе электромагнитной индукции Фарадея. Он лежит в основе действия трансформаторов и электрических машин, всевозможных преобразователей, электромагнитных автоматов и многих измерительных приборов. Как часть электродинамики Максвелла этот же закон явился фундаментом для техники электро — и радиосвязи, радиовещания, телевидения, радиолокации, многочисленных применений радиоэлектроники, радиоастрономии, всевозможных видов измерений и управления на расстоянии. Я уже не говорю, что именно закону об электромагнитной индукции мы обязаны светом, теплом и комфортом современных жилищ.

Сто пятьдесят пять лет тому назад было совершено это великое открытие. Совершено Майклом Фарадеем — сыном кузнеца и учеником переплетчика, великим Ученым XIX века.

На службе второму Отечеству

В середине XIX столетия почти во всех областях естествознания отмечался бурный прогресс. Конкретные достижения обогащали технику и промышленность. Успехи практики требовали объяснений, объяснения — теорий.

Гальваническое электричество и вольтов столб породили промышленность химических источников электрического тока. Опыты Эрстеда и Ампера доказали единство таких явлений, как электричество и магнетизм. Кроме того, Ампер свел магнитные явления к роли вторичных факторов. Он считал их побочными при прохождении электрического тока.

Затем в 1831 году Фарадей открыл электромагнитную индукцию, после чего тут же были изобретены и построены электродвигатель и электрогенератор. Появился еще один вид машинного электричества. Начала развиваться электротехника.

Фарадей не получил университетского образования, не знал высшей математики, зато не был обременен и школьными предрассудками, накопившимися в стенах университетов. Пытаясь формулировать общее правило, определяющее направление индуцированных токов, он сталкивался с трудностями. Этот вопрос был разрешен в 1834 году молодым профессором Петербургского университета Эмилием Христиановичем Ленцем.

«Тотчас же по просматривании мемуара Фарадея, — писал он в своем знаменитом докладе Петербургской Академии наук 29 ноября 1833 года, мне показалось, что все без исключения опыты электродинамического распространения (индукционных токов. — А.Т.) могут быть очень простым способом сведены обратно к законам электродинамических движений, так что ежели эти законы известны, то и все явления электродинамических распределений (индукционных токов. — А.Т.) могут быть выведены из них».

После блестяще поставленных экспериментов Ленц дал обобщенный закон индукции, о котором речь уже шла. То есть, размышляя о физической сущности исследованного явления, он пришел к выводу: «Ежели мы хорошо уясним себе приведенный выше закон, то мы сможем вывести заключение, что каждому явлению движения под действием электромагнитных сил должен соответствовать определенный случай электромагнитной индукции». Это положение можно сформулировать так: каждому электромагнитному явлению соответствует определенное магнитоэлектрическое явление.

Вместе с Якоби Ленц установил, что любая магнитоэлектрическая машина, которая служит для производства электрического тока, может быть использована в качестве электродвигателя, если через ее якорь или арматуру, как тогда говорили, пропускать ток от постороннего источника.

Ленц родился в старинном прибалтийском городе Дерпте (ныне город Тарту в Эстонской ССР). Шестнадцати лет поступил в Дерптский университет, где очень скоро обратил на себя внимание.

В 1823 году наш знаменитый мореплаватель Отто Евстафьевич Коцебу пригласил молодого человека принять участие в кругосветном путешествии на шлюпе «Предприятие» в качестве физика и натуралиста экспедиции. Ленц согласился и блестяще справлялся со своими обязанностями в течение всего плавания. Свидетельством его успехов является то, что сразу, по возвращении Ленц был принят адъюнктом Петербургской Академии наук и четыре года спустя, едва достигнув 26 лет, стал ординарным академиком.

Деятельность свою в Академии наук Ленц начал с реорганизации лаборатории физики и постановки серии опытов по электричеству и магнетизму. Независимо от Джоуля он вывел закон, утверждающий, что количество тепла, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника и квадрату силы тока. Затем он повторил опыты Деви, обнаружившего, что при нагревании электрическое сопротивление провода растет, и открыл закон, по которому должна меняться электропроводность металлов с изменением температуры.

В то же время он преподавал в Морском кадетском корпусе, возглавлял кафедру физики и физической географии в Петербургском университете. Позже был избран деканом физико‑математического факультета, а потом и ректором.

Ленц преподавал также в Михайловском артиллерийском училище и в Главном педагогическом институте, имел много помощников и учеников, которые в дальнейшем стали замечательными учеными. Многие достижения Ленца опередили свое время. О них забыли. И через полвека, когда сама жизнь и развитие техники потребовали объяснения электромагнитных явлений, вошедших в обиход, положения Ленца открывали вновь, называя их краеугольным камнем нарождающейся электротехники.

Летом 1839 года праздношатающийся люд северной столицы Русского государства облепил берега Невы. Публика несостоятельнее толпилась на набережных, а кто попроще спускались прямо на зеленый берег. Часов около десяти утра отвалила от Петропавловской крепости шлюпка с единственным пассажиром на борту. Невысокий плотный господин в цивильном костюме сидел на корме. Тонкие губы его были плотно сжаты, брови насуплены. Несколько дружных гребков, и лодка на середине реки. По команде матросы подняли весла. Пассажир нагнулся и стал копаться в тяжелом ящике, уставленном стеклянными банками с какой‑то жидкостью. Из банок торчали железки. Толстые провода вели к рамам неуклюжей машины, соединенным с большими колесами, наподобие мельничных, опущенными с бортов в воду.

Шлюпку уже изрядно снесло течением, когда под руками пассажира раздался легкий треск и колеса завертелись, ударяя плицами по невской волне. Повернувшись носом против течения, шлюпка пошла, разрезая тяжелую свинцовую воду. У крепости, где собралось многочисленное начальство, раздались дружные аплодисменты.

Так или примерно так состоялось первое в мире практическое испытание электрического двигателя, сконструированного и построенного в России Борисом Семеновичем Якоби.

Его двигатель питался от батареи гальванических элементов Грове — стеклянных банок, наполненных азотной кислотой, с цинковым н платиновым электродами.

Борис Семенович Якоби (Мориц Герман) родился в Потсдаме и окончил Геттингенский университет по специальности архитектура. Однако, переехав в Россию, он, не колеблясь, принял предложение Петербургской Академии наук участвовать в комиссии по «исследованию электромагнитных притяжений и законов намагничивания железа».

В отличие от многих иных иноземцев Якоби сразу и навсегда связал свою судьбу с Россией. Он женился на русской — Александре Григорьевне Кохановской, сменил имя и принял русское подданство. По его словам, он всю свою жизнь отдал служению России, которую считал «вторым отечеством, будучи связан с ним не только долгом подданства и тесными узами семьи, но и личными чувствами гражданина». Так отвечал он на неизбежные вопросы со стороны властей к натурализовавшемуся иностранцу.

В Петербурге Якоби встретился с Ленцем, Это был счастливый случай в жизни обоих. Связанные дружбой, ученые много лет совместно трудились в новой, развивающейся области науки об электричестве. Ленд, как сказали бы мы сегодня, был теоретиком. Якоби — практиком, очень изобретательным человеком и опытным экспериментатором.

Казалось, после такого блестящего начала, каким явилось испытание электродвигателя на Неве, от Якоби следовало бы ожидать дальнейшего усовершенствования своего детища. Тем более что слава о нем прокатилась по всей Европе. Однако, написав обстоятельную статью о конструкции, принципе действия своего двигателя, Якоби проанализировал его экономическую эффективность и пришел к выводу о нецелесообразности его применения в существовавших условиях. Паровые машины были пока впереди.

Позже, занимаясь поисками более надежных источников питания для электрической машины, Якоби обратил внимание на то, что слой меди, оседающий на одном из электродов, нарастает исключительно равномерно, в точности повторяя, как негатив» все неровности и царапины на поверхности электрода. При этом осажденный слой довольно легко отдирался от электрода тонким листиком.

В практическом уме изобретателя созрело решение: он снял медную табличку с двери — на ней стояло его имя — и сунул в банку вместо одного из электродов. Через некоторое время Якоби получил точный негатив. Тогда он взял тяжелый медный пятак — и снова получил его оттиск. Чудесное и очень своевременное открытие! В России готовилась реформа перехода на денежную систему ассигнаций взамен кредитных билетов. Но дело затягивалось в связи с изготовлением точных клише, которые бы не могли подделать фальшивомонетчики.

В том же году в Петербурге Якоби организовал первую мастерскую гальванопластики. В заказах недостатка не было: статуи для Зимнего дворца и Исаакиевского собора, барельефы для Большого театра в Москве, для Петропавловского собора и многих других зданий. Более сорока пудов благородного металла израсходовано на золочение медных листов для строящегося Исаакиевского собора.

Чтобы познакомить со своим изобретением европейских ученых, Якоби сделал гальванопластическую копию с металлической, пластины, на которой было выгравировано: «Фарадею от Якоби с приветом». И послал копию в Англию. Фарадей тут же ответил: «Меня так сильно заинтересовало Ваше письмо и те большие результаты, о которых Вы даете мне такой обстоятельный отчет, что я перевел его и передал почти целиком, издателям „Философикал мэгэзин“ в надежде, что они признают новости важными для своих читателей».

И Фарадей не ошибся. На Западе заинтересовались русским изобретением, и гальванопластические мастерские стали возникать во всех странах.

Якоби создал ряд приборов, в которых так нуждалась современная ему наука. Он изобрел и построил кабельные телеграфные линии в Петербурге (Зимний дворец — Главный штаб, Зимний дворец — Главное управление путей сообщения и публичных зданий, Петербург — Царское Село).

Во время Крымской войны ученый разработал способ электрического подрыва мин.

Борис Семенович был примерно трудолюбив. Вся его жизнь без остатка заполнялась работой во славу России.

В 1845 году немецкий физик Франц Нейман теоретически обобщил результаты опытных работ Фарадея и Ленца, а другой ученый — Густав Теодор Фехиер, физик, физиолог и философ, попытался распространить на явление электромагнитной индукции теорию Ампера. Третью попытку построить теорию электричества и электромагнетизма в том же 1845 году предпринял профессор Лейпцигского университета Вильгельм Эдуард Вебер. Все они старались создать математический фундамент теории электромагнитных взаимодействий. Однако удалось это лишь Джеймсу Клерку Максвеллу в начале второй половины века.

Первую статью, «О фарадеевских силовых линиях», Максвелл написал еще студентом Кембриджского университета. Автору шел всего двадцать четвертый год…

Вот его портрет: среднего роста, темноволос. Живые карие глаза. Очень подвижен и вместе с тем немногословен, но когда начинает говорить, то манера дружелюбная, хотя его юмор не всегда и не всем понятен. Чрезвычайно любознателен, даже в самых обычных явлениях умеет видеть интересные проблемы, при этом всегда четко ставит задачу. Чужд всякой позы и крайне прост во всем, что касается собственной внешности. Нестандартный набор качеств для британского джентльмена эпохи королевы Виктории.

Английские физики, как и большинство европейских ученых того времени, были уверены в том, что все физические явления можно и должно объяснять законами чистой механики. Между тем электромагнитные феномены механическим объяснениям не поддавались. Тогда ряд ученых обратился к позитивизму. Кирхгоф, например, призывал, «не заботясь о сущности вещей и сил, составлять уравнения, которые, будучи свободными от гипотез, по возможности точно соответствовали бы миру явлений». Максвелл в раннем периоде также избегал высказывать какие‑либо гипотезы об истинном механизме рассматриваемых им внутренних процессов. Он строит, по его словам, подходящие иллюстративные математические модели. И считает, что удачно подобранная аналогия может дать толчок к созданию математических формулировок, достаточно хорошо описывающих интересующие исследователя физические явления[28]. Можно только удивляться тому, что Максвелл вывел свои уравнения с помощью логических рассуждений из сложной модели с вращающимися вихрями в качестве магнитных сил. Эти силы передавались у него частицами, игравшими роль шестеренок в зубчатой передаче. А сама зубчатая передача являлась аналогом электрического тока[29].

Подведя итоги рассуждениям, Максвелл отбросил большую часть этого придуманного механизма. В результате осталась чистая теория.

В 1873 году на прилавках книжных лавок появился «Трактат об электричестве и магнетизме» Максвелла. Однако читателей ожидало разочарование. Книга оказалась очень сложной. Автор тысячестраничного «Трактата» считал, что, иллюстрируя электромагнитные явления, обладающие малой наглядностью, с помощью понятных механических моделей, он сделает свои математические формулировки более доступными. На самом же деле механические модели лишь затрудняли понимание всей теории.

Одна из глав «Трактата», а именно 9‑я глава IV части, называется «Основные уравнения электромагнитного поля». Однако уравнения Максвелла, по сути своей, являются скорее аксиомами электродинамики. Они сформулированы на основе всего доступного в те годы автору опытного материала, но ни в коем случае не «выведены» из опытных данных математическим путем. Ни одной минуты Максвелл не пытался строить гипотез о внутреннем микроскопическом механизме электрического поля. В соответствии с традицией европейской физики, заложенной Ньютоном, он принимал электромагнитное поле как данность и рассматривал механическую сторону электромагнитных процессов.

Позже Генрих Герц писал: «Теория Максвелла — это уравнения Максвелла». Трудно представить, что четыре уравнения, четыре аксиомы, введенные гением Максвелла в арсенал науки, за сто лет не были опровергнуты или хотя бы опротестованы ни одним фактом, ни единым проявлением электромагнитного поля, которые накопились с тех пор в бесконечном реестре физиков. Предложенные в середине прошедшего столетия, они в употреблении и сегодня.

Всю жизнь Максвелл, довольно замкнутый человек, не стремившийся распахивать свою душу перед посторонними, любил стихи. Он не только любил их читать, но писал и сам. В этом не было ничего удивительного — в XIX веке многие баловались рифмой. Стихи Максвелла довольно часто публиковались, правда в основном на страницах научных и научно‑популярных журналов. Может быть потому, что их читатели могли не только понять смысл и оценить художественные достоинства, но и расшифровать авторскую подпись. Максвелл подписывался псевдонимом — dp/dt.

Расшифровывается это выражение довольно своеобразно. Дело заключалось в том, что в учебнике физики, написанном друзьями Максвелла — Вильямом Томсоном и Питером Тэтой, второе начало термодинамики, то самое, что не позволяет построить вечного двигателя «второго рода», записывалось в виде: dp/dt = JCM, Поскольку знак равенства делает обе части уравнения равноправными, James Clerc Maxwell — Джеймс Клерк Максвелл вполне имел право взять в качестве подписи левую часть, если в правой оказывались его инициалы.