А как рождаются галактики «ненормальные»?

Все-таки пока споры шли вокруг старой хаббловской классификации о рождении и эволюции нормальных галактик, обстановка была более или менее мирной. Но в послевоенные годы одну позицию за другой в древней науке начинают захватывать радиоастрономы. Внедрение новых методов наблюдений и новой техники привело буквально к лавине новых открытий. По существующим оценкам, применение радиотелескопов создало в астрономии не меньший качественный скачок, чем это было в 1609 году, когда Г. Галилей впервые направил на небо зрительную трубу.

50-е годы XX столетия ознаменовались началом второй революции в астрономии. Именно в этот период радиоастрономы обнаружили на небе участки, с которых на землю лились буквально водопады электромагнитной энергии, невидимые в обычные оптические телескопы. Постепенно радиоисточники отождествлялись с оптическими объектами. Часть из них оказалась остатками некогда вспыхнувших в нашей Галактике «сверхновых» звезд. Сегодня они представляли собой клочья газовых облаков, в которых с субсветовыми скоростями метались и тормозились в путах магнитных полей потоки заряженных частиц. Их «радиовопли» и составляли значительную долю галактического радиоизлучения.

Другая группа радиоисточников лежала явно за пределами Галактики и отождествлялась со странными объектами, получившими название «пекулярных», то есть аномальных, галактик. Мощность радиоизлучения их была больше мощности излучения в оптическом диапазоне и значительно превышала радиоизлучение нормальных галактик.

В общем, открыты были явно «ненормальные» галактики, которые скоро настоятельно потребовали своего места в общей схеме космогонической эволюции.

Нам еще предстоит встретиться со многими из них, и потому стоит хотя бы перечислить некоторые из любопытных открытий, сыгравших определенную роль в развитии космогонических взглядов последних лет. Полный реестр открытий 50–70-х годов выглядел бы, конечно, куда внушительнее.

После отождествления радиогалактик с оптическими объектами, находящимися за пределами нашей Галактики, по всему миру прокатилась волна охоты за внегалактическими новинками. И вот мексиканский астроном Г. Аро открыл класс «голубых галактик» с усиленной ультрафиолетовой частью спектра. Новые объекты оказались густо населенными молодыми горячими звездами-гигантами. Затем в Москве на VI Совещании по вопросам космогонии Б. Воронцов-Вельяминов рассказал о «взаимодействующих галактиках». Это были в основном кратные системы, соединенные перемычками, снабженные хвостами или погруженные в облака светящегося «тумана». Потом американцами К. Линдсом и А. Сэндиджем был опубликован класс «взрывающихся галактик». И наступило время квазаров — самой большой астрономической загадки, неразрешенной по сей день.

Поток открытий все нарастал. Астроном Ф. Цвикки обнаружил «компактные галактики», отнесенные многими специалистами к весьма молодым образованиям материи во вселенной. Т. Метьюз, У. Морган и М. Шмидт выступили с классом «N-галактик», которые они назвали так из-за яркого маленького ядра «nucleus», хорошо заметного в красноватом облаке оболочки. Почти одновременно с ними А. Сэндидж опубликовал сообщение об открытии им квазагов — плотных внегалактических образований, названных так путем сокращения длинного наименования «квазизвездные галактики».

В 1967 году бюраканский астроном Б. Маркарян опубликовал список небесных объектов, получивших в дальнейшем название «галактик Маркаряна».

Между тем на помощь радиотелескопам пришли ракеты, искусственные спутники Земли и автоматические межпланетные станции (АМС). А потом уж и орбитальные космические лаборатории с экипажами. Они дали возможность использовать такие дополнительные виды информации, как рентгеновское и гамма-излучение, а также ультрафиолетовые и инфракрасные лучи, задерживаемые в большинстве своем атмосферой Земли.

Вторая революция в астрономии продолжается. Сегодня в плане ее развития стоит «нейтринная астрономия» и прием гравитационных волн — новый вид информации, от которого специалисты ждут сенсационных известий.

Все перечисленные выше внегалактические объекты требовали своего включения в общую схему космогонии, которая тоже не могла оставаться прежней, ибо под такой лавиной открытий не могла удержаться долго ни одна из существующих гипотез.

Сначала следовало разобраться в причинах, по которым «ненормальные» небесные объекты отличаются от уже известных — нормальных, а затем можно было попробовать перейти к их обобщению. И в первую очередь предстояло решить вопрос с радиогалактиками: что они собой представляют и что в них происходит?

Специалистам было известно, что в обычных — нормальных — галактиках радиоизлучение создавалось в основном быстрыми заряженными частицами межзвездного газа, которые тормозились галактическими магнитными полями; немного радиоизлучения добавляли и звезды. Но для «пекулярных» галактик это не излучение, это пустяк. Какой же механизм вызывает к жизни столь мощный «радиоголос» этих необычных объектов?

Когда в 1951 году В. Бааде получил первый снимок радиогалактики Лебедь-А, объект оказался двойным, да еще с двумя радиоспутниками по бокам. Любопытная конструкция, правда? Что же там могло происходить?

К сожалению, картины могучих взрывов в галактиках, даже если вещество разлетается со скоростями тысяч километров в секунду, кажутся земным наблюдателям абсолютно неподвижными. Целой жизни человеческой не хватит на то, чтобы заметить там хоть какое-то изменение. Это и понятно. Вспомните, как быстро пролетает над головой реактивный самолет. Буквально мелькнет, не успеешь повернуть голову. А теперь вспомните, как тот же летательный аппарат медленно ползет по далекому горизонту, оставляя за собой длинный инверсионный след. А ведь скорость его относительно земли не изменилась.

Для радиогалактик, удаленных от нас на десятки и сотни миллионов световых лет, жизнь целых поколений людей — миг. Время самое относительное понятие из всех фундаментальных основ, введенных человеком в обиход. Каждое наблюдение подобно моментальной съемке. Оно выхватывает одно какое-то мгновенное значение из изменяющегося состояния небесного объекта. И по этому моментальному снимку мы хотим восстановить весь характер изменений. Такая задача подчас может показаться «сумасшедшим детективом», в котором на основании единственной улики восстанавливается не только само преступление, но его мотивы, история жизни преступника и даже диалог его с жертвой или сообщником. Все это очень похоже на работу специалиста по космогонии. Небольшая разница заключается в том, что у последнего нет и не может быть надежды на то, что в конечном итоге объект следствия сядет за стол и, «расколовшись», покается и поведает истину.

Трудно сказать, приходили ли подобные мысли в голову астроному В. Бааде, впервые узревшему радиогалактику Лебедь-А на пластинке. Автор даже склонен считать, что скорее не приходили. Но и надежд особых на дополнительные сведения у него, по-видимому, тоже не было. И по зрелому размышлению над полученным изображением В. Бааде предположил, что перед ним результат столкновения! Две звездные системы — примерно по 100 миллиардов звезд в каждой, — летящие навстречу друг другу со скоростями около 3 тысяч километров в секунду, врезаются «в лоб»!!!

Кошмарный случай, вполне достойный пера писателя-фантаста. Однако с позиций научной объективности событие должно выглядеть не так страшно. Скорее всего звезды столкнувшихся галактик, подобно комариному рою, спокойно пролетят друг сквозь друга, разве что несколько нарушив собственные движения отдельных светил. Слишком велики расстояния между небесными телами в таких системах, как галактики, чтобы в результате столкновения «от звезд сыпались бы осколки».

В. Бааде представлял себе это лучше, чем кто-либо другой. Но он знал и то, что галактики окружены протяженными коронами межзвездного газа. А встреча газовых облаков должна происходить совершенно в ином ключе. Прежде всего столкновение газовых облаков будет частично упругим. То есть облака при встрече должны затормозиться, испытать сжатие, затем упруго оттолкнуться друг от друга и разойтись в стороны. Вот тут-то и мог крыться источник энергии радиоизлучения.

Читателю наверняка известно из курса школьной физики, что, пока заряженные частицы равномерно движутся в свободном пространстве, своего присутствия они не обнаруживают. Но стоит им попасть в магнитное поле, как траектории их движения начинают закручиваться, прямолинейное движение сменяется криволинейным, а равномерное — ускоренным (или замедленным). При любом же ускорении заряд излучает электромагнитные волны.

В коронах межзвездного газа заряженных частиц, как говорят, навалом. Среди них — множество так называемых релятивистских частиц, то есть тех, которые движутся со скоростями, сравнимыми со скоростью света. И вот торможение этих релятивистских электронов в магнитных полях как раз и должно порождать то самое радиоизлучение в диапазоне метровых волн, которые мы так здорово научились принимать с помощью радиотелескопов.

Прекрасно, просто прекрасно складывалась гипотеза столкновения. В. Бааде потирал руки от удовольствия, рассказывая о ней Рудольфу Минковскому. И не смог скрыть досады, когда строптивый помощник усомнился в истинности гипотезы. Неизвестно, сколько длился спор. Зато известно, чем он кончился — пари на бутылку виски.

— Проверим вместе? — предложил В. Бааде.

— Проверим, — согласился Р. Минковский.

С помощью спектрографа, установленного на пятиметровом телескопе, они получили несколько спектров свечения газа спорной галактики. Если там и вправду действовал механизм столкновения и газовые облака тормозились, атомы газа должны были находиться в возбужденном состоянии. А это могли показать спектры.

Астрономы проявили пластинки, расшифровали полученные изображения и… Р. Минковскому пришлось «сбегать в магазин». Пари выиграл В. Бааде. И год спустя, на VIII Международном астрономическом съезде, он доложил свою гипотезу уже от имени обоих. Сообщение было весьма неожиданным и необычным. Однако, несмотря на целый ряд сомнений, сразу возражений не последовало. Оно и понятно: уж если такие специалисты отваживаются на выдвижение гипотезы публично, значит, она подкреплена аргументами, против которых с голыми руками выходить не стоит. Но постепенно, как и полагается, плоды первоначальных сомнений созревали. Прежде всего многих смущала малая вероятность лобового столкновения двух галактик. Даже если выбрать самое густое скопление, а к тому времени радиоисточников на небе было обнаружено уже порядочно, то расстояния между соседями и тогда будут слишком большими, чтобы подобные столкновения происходили достаточно часто.

В. Бааде такое возражение предвидел и потому поторопился сам подсчитать вероятность столкновения для скопления галактик, в которое входила Лебедь-А. Однако результаты получились у него малодостоверные. Впрочем, авторитет В. Бааде был настолько велик, что после его выступления на съезде появилось и немало сторонников гипотезы столкновения. Сторонники тоже разрабатывали теории и приводили убедительные расчеты «за».

Интересное возражение привел В. Амбарцумян. Он сказал, что если авторы гипотезы настаивают на том, что, по крайней мере, хотя бы три двойные галактики излучают радиоволны в результате прямых столкновений в лоб, то они, наверное, согласятся, что косых столкновений при этом должно быть значительно больше; примерно раз в сто больше… Но где на небе триста пар галактик, сталкивающихся друг с другом нецентрально?

Подоспели и другие возражения. Подсчитав количество энергии, излучаемое Лебедем-А, и время, прошедшее с начала «столкновения», астрономы пришли к выводу, что для обеспечения наблюдаемого потока излучения слишком большая часть энергии торможения должна быть передана заряженным частицам. КПД, по расчетам Дж. Бербиджа, приближался к ста процентам. Дебет явно не сходился с кредитом. А это верный признак надвигающегося банкротства.

В общем, спор о природе радиогалактик и о механизме их излучения разгорелся во всем мире. Но никакая дискуссия не может считаться плодотворной, если она состоит из одних лишь негативных замечаний. Такой спор ведет в тупик. Сторонники точки зрения В. Бааде и Р. Минковского справедливо спрашивали:

— Хорошо, пусть не столкновение, но что тогда?

Нужна была позитивная гипотеза, которая обеспечила бы дальнейший прогресс в изучении вопроса.

И в 1956 году на совещании по вопросам космогонии, которое состоялось в Москве, В. Амбарцумян «взорвал бомбу». Нет, нет, дело здесь не в пиротехнике. Это лишь образное выражение для того, чтобы определить эффект, который произвело его сообщение на собравшихся. Он предположил, что в галактике Лебедь-А мы имеем дело не со столкновением двух галактик, а, наоборот, с разделением одной на две!

Это была вовсе не гипотеза ad hoc, как говаривали древние римляне (это выражение означает «для данного случая, кстати»). Советский астроном предложил новое толкование для наблюдаемого явления, основываясь на своей же идее 1954 года о космогонической активности ядер галактик.

По мнению В. Амбарцумяна, к результатам этой активности можно отнести и выброс из ядер галактик радиоизлучающих облаков, и даже возникновение спиральных рукавов (читатель, наверное, помнит тот незавершившийся спор?).

Новая гипотеза содержала не только много неожиданного, но и необъяснимого. Возьмите хотя бы выбросы масс газа из ядер галактик! Раньше считалось, что центральные части этих звездных систем состоят из одних звезд. Даже если допустить, что газ в ядрах есть, его там должно быть просто слишком мало! Откуда же берутся громадные массы вещества, истекающего из ядер галактик и создающего мощное радиоизлучение? Тут много непонятного. Астрономы, например, знали, что в центральной части нашей Галактики плотность газовой материи не выше, чем на периферии. А между тем голландские астрономы во главе с Я. Оортом обнаружили, что именно оттуда, из центра, происходит непрерывное истечение нейтрального водорода. И американский астроном Г. Мюнч обнаружил очень похожее непрерывное истечение газа из ядра галактики Андромеды. Причем интенсивность истечения оказалась такой, что за какие-то миллионы лет ядро выбрасывало из своих недр массу, которой хватило бы на добрый миллион таких звезд, как наше Солнце. Галактические ядра в этой гипотезе представали некими бутылками, в которых заключен дух…

Противоречия казались непреодолимыми. Какой же выход из него нашел В. Амбарцумян? На VI Московском совещании по вопросам космогонии в 1959 году он заявил: «Мы приходим к выводу, что в центрах галактик, в их ядрах имеются тела, на много порядков превосходящие по массе обычные звезды и не являющиеся ни диффузными туманностями, ни звездами. Этот вывод о наличии в центре некоторых галактик плотных тел необычайно большой массы кажется нам неизбежным следствием наблюдательных данных».

Итак, налицо знакомая уже нам идея Бюраканской школы о сверхплотном дозвездном состоянии материи, только теперь уже на галактическом уровне. В. Амбарцумян считал, что после выброса из ядер вещество претерпевает ряд трансформаций и превращается в конгломерат звезд, межзвездного газа и облаков заряженных частиц высоких энергий.

Будто все идет хорошо. И все же один существенный недостаток снижал ценность выдвинутой гипотезы: никто и никогда не видел вещества в подобном состоянии, и не было теории, доказывающей возможность существования «необычно большой массы» такого вещества. Ведь имелась в виду масса, во много, очень много раз превышающая массу Солнца…

Неожиданно новую концепцию Амбарцумяна поддержал Б. Воронцов-Вельяминов. Он предположил, что и компактные галактики Цвикки, и открытые им самим «взаимодействующие галактики» следует рассматривать как разлетающие части, бывшие некогда единым ядром.

Но для большинства астрономов гипотеза Амбарцумяна была слишком революционной. Лишь кое-кто время от времени рисковал публично выступить в поддержку новой концепции.

Впрочем, если гипотезе Амбарцумяна приходилось туго, то и идея В. Бааде и Р. Минковского тоже «дышала на ладан». В ней обнаруживалось все больше и больше недостатков. А когда Т. Метьюз и М. Шмидт увидели, что и одиночные галактики имеют оптические спектры, аналогичные «сталкивающимся» компонентам Лебедя-А, гипотеза столкновения рухнула окончательно, похоронив под своими обломками бутылку виски, за которой напрасно бегал Р. Минковский десять лет назад. К сожалению, его шеф В. Бааде в 1960 году окончил свой жизненный путь, так и не узнав, что в споре 1951 года прав-то был не он, а его помощник. Впрочем, может быть, и лучше умереть, не расставшись с иллюзиями…

Вскоре после окончательного падения гипотезы столкновения общая концепция В. Амбарцумяна об активности ядер галактик получила существенное подтверждение. Наблюдатели обнаружили мощный взрыв в ядре галактики М-82. Да и вообще многие открытия 60-х годов, словно сговорившись, «лили воду на мельницу В. Амбарцумяна».

Интересно еще раз вспомнить последовательность воззрений этого выдающегося советского астронома. В 1947 году он впервые высказывает предположение о существовании сверхплотных «Д-тел». Затем следует идея об активности ядер галактики…

Ученому немало пришлось выдержать критики и прямого отрицания, прежде чем его идеи стали если не подтверждаться полностью, то, во всяком случае, иметь под собой реальную почву. Тут и открытие новых типов галактик, и взрывы в ядрах, и наконец квазары… Не родственники ли они таинственным «Д-телам»? Конечно, категорически утверждать это нельзя. Ведь и сегодня, в 1975 году, штурм квазаров все еще продолжается. Вообще природа сверхплотных тел остается по-прежнему неясной, хотя нейтронные звезды благодаря открытию пульсаров и вошли в астрономический арсенал довольно прочно.

Несколько лет назад, размышляя над причинами расширений звездных ассоциаций, обнаруженных коллективом В. Амбарцумяна, английский астроном Т. Голд задался вопросом: каким должен быть механизм явления, разбрасывающего в разные стороны звезды? Скорее всего это должен быть мощнейший взрыв, супервзрыв. Но отчего бы ему произойти? Может быть, существуют в космосе силы, сжимающие гигантские массы газа до состояния коллапса? Тогда на каком-то этапе неудержимого сжатия в недрах этого сгустка вещества с массой, во много раз превосходящей массу Солнца, начнутся незатухающие ядерные реакции. Сжатие остановится. А затем коллапс перейдет в антиколлапс — в грандиозный взрыв.

Читатель, наверное, уже заметил, что ход рассуждений английского астронома очень похож на размышления о гипотетических превращениях «черных дыр» в «белые дыры». Но при этом не следует забывать, что высказывания Т. Голда относятся ко времени, когда этой проблемой, кроме школы В. Амбарцумяна, занималось в мире не так уж много теоретиков. Не то что сейчас.

Выступая на Сольвейской конференции, Т. Голд развил свою гипотезу. «Предположим, — говорил он, — что подобные взрывы могут происходить еще в больших масштабах. Тогда мы приблизились бы к концепции коллеги В. Амбарцумяна…»

Идея была заманчивой, и кое-кто из астрономов-теоретиков тут же принялся за расчеты возможных моделей. А 60-е годы все продолжали и продолжали «работать на В. Амбарцумяна». В рамки его гипотезы укладывались и «голубые галактики Аро», и компактные — Цвикки, галактики и квазаги Сэндиджа. А уж взрыв в ядрах галактик был просто подарком молодому коллективу. Со временем бюраканские астрономы пришли к выводу, что галактические ядра могут, по-видимому, взрываться неоднократно, хотя их активность должна падать. Тогда вполне вероятно, что среди бесчисленных звездных архипелагов могут попадаться и галактики, утратившие способность к эруптивности, как любят говорить специалисты (то есть способность к извержениям), и зрелые галактики, в которых указанные процессы идут с полной силой. Должны быть и такие, в ядрах которых космогоническая активность еще не проявилась.

Интересно, что именно в тот день, когда автор писал эти строки, почтальон принес газету с любопытной заметкой. Корреспондент из Алма-Аты писал, что на высокогорной обсерватории Астрофизического института Академии наук Казахской ССР аспирант Л. Кондратьев обнаружил в созвездии Змеи весьма необычную туманность, состоящую из материи, находящейся в чрезвычайно ранней стадии развития, о которой науке пока известно очень мало. Любопытное сообщение. На чьи весы ляжет оно дополнительным грузом? На чашу сторонников классического взгляда на формирование галактик из диффузной материи или его запишут себе в актив ратоборцы новой гипотезы?..

Теоретики сегодня довольно далеко отстали в своих попытках осмыслить и объяснить факты, представляемые наблюдениями. Все понимают, что в ядрах галактик, в условиях, пока совершенно нам неведомых, могут быть обнаружены явления, которые «могут привести к противоречию с законом сохранения энергии (и вещества) в его современной форме, ограниченной известными нам формами энергии, и потребовать обобщения этого закона». Так писал В. Амбарцумян в 1962 году. Об этом говорил и другой советский астроном — ленинградский профессор Н. Козырев.

Новые источники энергии звезд?! Не сжатие, не ядерный пожар?! Тогда что?..

Идут годы. Труд ученого тяжело оценить в количественных единицах. Для неспециалистов, для потребителей научной продукции всегда важен результат. А каков результат исследования широковещательно объявленных возможностей, таящихся в галактическом ядре? Конкретно о нем говорить рано. Как не добились пока армянские астрофизики построения теории сверхплотных, массивных тел, теории, которая полностью удовлетворяла бы требованиям новой тенденции, так и теоретическая разработка возможных новых источников энергии внегалактических объектов, предпринятая Н. Козыревым, тоже пока повсеместного признания не получила…

За последние годы ряды астрофизиков пополняются все больше и больше «чистыми» физиками, отдавшими своей науке немало лет жизни. Наверное, так и должно быть. Тесны становятся стены земных лабораторий современной физике.