§ 9. Проблемы нейтринного излучения Солнца

До сравнительно недавнего времени одна из важнейших проблем астрономии — проблема внутреннего строения и эволюции звезд решалась совместными усилиями астрофизиков-теоретиков и астрономов-наблюдателей. Как уже неоднократно подчеркивалось, эта проблема никоим образом не могла быть решена без непрерывного контроля выводов теории астрономическими наблюдениями. Особенно большое значение для теории имел анализ прецизионных наблюдений блеска и цвета звезд, входящих в состав скоплений (см. § 12). Считалось и считается, что справедливость теории внутреннего строения и эволюции звезд объясняется возможностью на основе этой теории объяснить ряд тонких особенностей диаграммы Герцшпрунга — Рессела для различных скоплений звезд, имеющих различный возраст. Все же неопределенное ощущение неудовлетворительности, несомненно, остается. В идеале было бы неплохо иметь возможность непосредственно получить основные характеристики звездных недр путем прямых наблюдений.

Еще сравнительно недавно сама возможность «заглянуть» в недра звезд представлялась по меньшей мере совершенно фантастической. Огромная толща вещества звезды делает ее непрозрачной для всех видов электромагнитного излучения, включая самые жесткие гамма-лучи. Миллионы лет требуется квантам, генерируемым в центральных областях звезд (благодаря происходящим там ядерным реакциям), чтобы «просочиться» к поверхностным слоям и выйти наружу в межзвездное пространство. За это время кванты, взаимодействуя с веществом звезды, испытывают огромное количество поглощений и переизлучений, претерпевая при этом серьезные трансформации. Если первоначально их частоты соответствовали рентгеновскому диапазону, то, выходя из поверхности звезды, они становятся гораздо «мягче» и частоты их лежат уже в оптическом и непосредственно примыкающих к нему инфракрасном и ультрафиолетовом диапазонах. Другими словами, их свойства уже совсем не отражают свойств среды, в которой они первоначально возникли. Казалось бы, нет никакой возможности получить какую-либо информацию непосредственно из недр звезды. Однако столь богатое «чудесами» развитие физики в нашем столетии совершенно неожиданно открыло возможность хотя бы в принципе подойти к решению этой, считавшейся неразрешимой проблемы.

В 1931 г. швейцарский физик-теоретик Вольфганг Паули, исходя из твердого убеждения в выполнении законов сохранения для элементарных процессов и анализируя тогда во многом еще не ясное явление ^-распада, выдвинул смелую гипотезу о существовании новой элементарной частицы. Эта частица, получившая название «нейтрино», должна иметь весьма удивительные свойства. Будучи электрически нейтральной, она должна обладать массой покоя ничтожно малой, скорее всего, даже нулевой. По этим причинам нейтрино должны обладать совершенно исключительной способностью проникать через огромные толщи вещества. Подсчитано, что без заметного поглощения пучок нейтрино с энергией в миллион электронвольт может пройти через стальную плиту, толщина которой в сотню раз превосходит расстояние от Земли до ближайших звезд! Ясно, что для таких частиц пройти «насквозь» через любую звезду, как говорится, «пустое дело»… Но столь удивительно слабая способность нейтрино взаимодействовать с веществом имеет и свою «обратную сторону». Потребовалось 25 лет после гениального теоретического предсказания Паули, чтобы эта необычайная частица была обнаружена в лабораторном эксперименте и

тем самым из разряда гипотетических перешла в разряд вполне реальных элементарных частиц.

После этого открытия физика нейтрино значительно продвинулась вперед. Как и всякая «порядочная» элементарная частица, нейтрино обладает «двойником» — античастицей, получившей название «антинейтрино». Выдающийся советский физик академик Б. М. Понтекорво теоретически предсказал существование двух «сортов» нейтрино — «электронных» и «мюонных». Очень скоро это предсказание блестяще оправдалось на опыте. Б. М. Понтекорво был также первым, кто указал на важность нейтрино для изучения звездных и в первую очередь солнечных недр.

Теория термоядерных реакций, происходящих в центральных областях Солнца, основы которой были изложены в § 8, позволяет довольно надежно оценить величину потока солнечных нейтрино на Земле. В самом деле, как уже неоднократно подчеркивалось выше, суть термоядерных реакций, происходящих в недрах нашего светила, сводится к тому, что четыре протона объединяются в одну альфа-частицу. При этом испускаются два нейтрино. При каждом таком «объединении» выделяется около 25 МэВ энергии, которая в конечном результате выделяется в межзвездное пространство, обеспечивая светимость Солнца. Поэтому полное количество нейтрино, образующихся в недрах Солнца, N = 2Ь&/25 МэВ = 1039 с-1, а поток их на Земле ^4рг2 = 1011 см-2 • с-1. Это огромная величина. Мы буквально «купаемся» в потоке солнечных нейтрино.

Однако ничтожно малая вероятность взаимодействия солнечных нейтрино с веществом делает эксперименты по их обнаружению исключительно трудными. Идея такого эксперимента была предложена еще в 1946 г. Б. М. Понтекорво. Обнаружение нейтрино может быть основано на реакции

псолн+ 37с1 37Аг + е ,                                                                                                                                          (9А)

где 37С1 — устойчивый изотоп хлора, а 37Аг — радиоактивный изотоп аргона. Эта реакция называется «обратный бета-распад». Хотя вероятность поглощения нейтрино изотопом хлора весьма мала, все же на практике она оказывается пока единственно возможной для обнаружения солнечных нейтрино. В качестве «рабочего вещества», достаточно богатого изотопом «хлор-37», начиная с 1955 г. используется прозрачная жидкость перхлорэтилен (или «четыреххлористый углерод»), химическая формула которой С2С14. Эта довольно дешевая жидкость широко используется в «бытовой» химии как средство очистки поверхностей. Первые опыты по обнаружению нейтрино этим методом были «нацелены» отнюдь не на Солнце, а на ядерные реакторы, излучающие огромное количество нейтрино. Задачей этих опытов, поставленных выдающимся американским физиком-экспериментатором Дэвисом, было «научиться» различать нейтрино и антинейтрино. Последние изотопом 37С1 не поглощаются. В качестве детектора Дэвис использовал сравнительно небольшую емкость в 3900 литров перхлорэтилена. Сущность эксперимента состояла в оценке количества ядер радиоактивного изотопа 37Аг, которые образуются в емкости, наполненной перхлорэтиленом. Такая оценка производится методами современной радиохимии.

Хотя основная цель эксперимента и не имела отношения к астрономии, тем не менее, как «побочный продукт», Дэвис впервые получил оценку верхней границы потока солнечных нейтрино, которая, конечно, была еще слишком груба. Чувствительность первого эксперимента Дэвиса была примерно в тысячу раз ниже ожидаемого потока солнечных нейтрино в том диапазоне энергии, который поглощается изотопом 37С1.

Последняя оговорка весьма существенна. Выше мы оценили величину ожидаемого полного потока солнечных нейтрино. Однако перхлорэтиленовый детектор способен поглощать далеко не все солнечные нейтрино с одинаковой эффективностью. Между тем энергетический спектр солнечных нейтрино весьма чувствительным образом зависит от физических условий в недрах Солнца, т. е. от температуры, плотности и химическогосостава. Другими словами, энергетический спектр солнечных нейтрино, а следовательно, скорость образования в перхлорэтилене радиоактивных ядер 37Аг сильно зависит от модели солнечных недр.

Начиная с1955 г. Дэвис. и его сотрудники упорно работали над повышением чувствительности перхлорэтиленового детектора нейтрино. В результате их усилий в этом направлении чувствительность детектора увеличилась к настоящему времени почти в 30 000 раз! В его современном виде нейтринный детектор представляет собой грандиозное сооружение (рис. 9.1). Гигантский резервуар, наполненный жидким перхлорэтиленом, имеет объем около 400 кубометров, что близко к объему нормального 25-метрового плавательного бассейна. Установка расположена на дне глубокой старой шахты, пробитой в скальном грунте. Глубина шахты превышает 1,5 км, что соответствует экранировке установки эквивалентным слоем воды толщиной около 4,5 км. Расположение детектора глубоко под землей диктуется необходимостью свести к минимуму помехи, приводящие к образованию радиоактивных изотопов аргона без поглощения ядрами хлора нейтрино. Указанные помехи вызываются проникающей компонентой космических лучей. Мю-мезоны, входящие в состав этой компоненты, взаимодействуя с веществом, порождают быстрые протоны, которые, сталкиваясь с ядрами хлора, образуют радиоактивный изотоп 37Аг.

Современная чувствительность нейтринного детектора определяется прежде всего величиной «космического» фона, приводящего к образованию описанным выше способом «паразитных» ядер 37Аг.

Некоторое понятие о чувствительности этой гигантской установки может дать тот факт, что из-за облучения солнечными нейтрино во всем огромном бассейне перхлорэти- лена одновременно присутствуют всего лишь несколько десятков ядер радиоактивного изотопа 37Аг. Заметим в этой связи, что период полураспада этого изотопа около 35 дней.

Это ничтожное количество 37Аг удается выделить из «бассейна» путем «продувания» его гелием, после чего изотопы аргона выделяются из гелия химическим путем. Вся эта процедура, конечно, сопряжена с серьезными экспериментальными трудностями, которые Дэвис и его коллеги успешно преодолели.

Едва ли не самым парадоксальным следствием опытов Дэвиса и его коллег является неожиданно малое значение потока солнечных нейтрино. По состоянию вопроса на 1982 г. можно было утверждать, что количество поглощенных солнечных нейтрино за одну секунду, рассчитанное на один поглощающий атом хлора, равно (2,2 ± 0,4) 10-36 (заметим, что величина 10-36 получила специальное название «8. п. и.» — «единица солнечных ней-

трино»). Между тем, если бы принятая в настоящее время модель солнечных недр была точной, эта величина должна была бы быть в три раза больше.

Это расхождение между ожидаемым результатом и данными наблюдений представляется довольно большим. Конечно, часть этого расхождения следует искать в несовершенстве теорий, как чисто физических, так и астрономических. Чисто физической является задача вычисления вероятности поглощения хлором солнечных нейтрино. Эта вычисленная вероятность, однако, подкрепляется результатами прямых лабораторных экспериментов, так что нет оснований сомневаться в ее правильности. Возможные ошибки здесь вряд ли превышают 10%. Более серьезным является вопрос о точности ныне принятой модели внутренних областей Солнца. Как мы уже упоминали выше, от этой модели зависит энергетический спектр солнечных нейтрино, а следовательно, и количество образовавшихся в бассейне перхлорэтилена изотопов радиоактивного аргона. Например, скорость образования нейтрино при бета-распаде 8 В (образующихся при одной из ветвей протон-протонной реакции; см. § 8) зависит от температуры Т приблизительно как Т13, т. е. очень сильно. Между тем перхлорэтиленовый детектор регистрирует преимущественно нейтрино, образовавшиеся при распаде 8В, так как они обладают наибольшей энергией (~ 14 МэВ). Заметим, что количество таких нейтрино составляет ничтожную долю от полного нейтринного потока, который почти не зависит от модели Солнца.

В принципе при современном уровне теории модель любой звезды, находящейся на главной последовательности, может быть построена достаточно точно, если известна масса звезды- и распределение ее химического состава по всей толще. Для Солнца масса известна с высокой точностью, в то время как имеется достаточно большая неопределенность в распределении его химического состава. Последнее зависит от характера перемешивания вещества в недрах Солнца. Скорее всего, относительное обилие гелия в ядре Солнца выше, чем в более наружных слоях. Разница в обилиях гелия в центральных областях и на периферии зависит также от возраста Солнца, который принимается равным 4,7 миллиарда лет. Для построения моделей имеют также большое значение полученные из лабораторных данных скорости тех или иных ядерных реакций, происходящих в солнечных недрах. Например, переоценка времени жизни свободных нейтронов, которая произошла в 1967 г., и уточнение лабораторных данных о скорости некоторых важных для астрофизики ядерных реакций заставили несколько пересмотреть значение скорости протон-протонной реакции — важнейшей термоядерной реакции в недрах Солнца.

Предложенные в последние годы модели Солнца дают весьма разные значения ожидаемого в экспериментах Дэвиса количества поглощенных нейтрино — от 30 до 6 8. п. и. Однако даже последнее, наинизшее значение все же в несколько раз превосходит наблюдаемую верхнюю границу.

Означает ли столь неожиданный результат экспериментов по обнаружению солнечных нейтрино, что наши представления о внутренней структуре и эволюции звезд неверны и нуждаются в коренном пересмотре? Пока для такого вывода оснований нет. Но есть проблема объяснения результатов опытов Дэвиса.

Прежде всего не все возможности построения модели Солнца исчерпаны. В принципе малое значение нейтринного потока, фиксируемое перхлорэтиленовым детектором (реагирующим, как мы уже говорили выше, главным образом на нейтрино, образующиеся при радиоактивном бета-распаде 8В в «боковой» ветви протон-протонной реакции), можно объяснить предположением, что относительное обилие тяжелых элементов в недрах Солнца по крайней мере в 20 раз меньше наблюдаемого значения на его поверхности. При малом обилии тяжелых элементов вещество солнечных недр становится более прозрачным, температура уменьшается, а следовательно, уменьшается поток нейтрино, возникающих при распаде 8В. Сразу же, однако, возникает трудность: вычисленное на основе этого предположения первоначальное обилие гелия в веществе, из которого образовалось Солнце,

должно быть в несколько раз меньше наблюдаемого обилия гелия в межзвездной среде. Нелегко также представить себе, каким способом образовался столь большой «дефицит» тяжелых элементов в недрах Солнца по сравнению с его поверхностью. Все же можно не сомневаться, что попытки объяснить результаты экспериментов Дэвиса разного рода модификациями солнечной модели будут продолжаться и, кто знает, возможно, приведут к успеху.

Другая возможность объяснения отрицательного результата опытов по обнаружению солнечных нейтрино состоит в ревизии основных представлений о природе нейтрино. Так, например, была высказана гипотеза, что нейтрино — нестабильная частица. Эта гипотеза требует признания у нейтрино хотя и малой, но конечной массы покоя. Если предположить, что период полураспада нейтрино меньше нескольких сотен секунд, то ясно, что образовавшиеся в недрах Солнца нейтрино просто не дойдут до Земли. Разновидностью этого типа гипотез является «гипотеза осцилляции», предложенная Б. М. Понтекорво. Суть этой гипотезы сводится к тому, что испущенные Солнцем «электронные» нейтрино могут превращаться в «мюонные», на которые детектор Дэвиса не реагирует. Однако такие гипотезы требуют коренного изменения существующих представлений о свойствах элементарных частиц. Уж слишком велика цена, которую надо заплатить за объяснение отрицательного результата опытов Дэвиса. Вряд ли эта гипотеза (так же, как и другие родственные ей) соответствует действительности1.

Совершенно другой подход к обсуждаемой здесь проблеме содержится в гипотезе Фаулера, высказанной в конце 1972 г. Он предположил, что несколько миллионов лет назад во внутренних слоях Солнца произошло сравнительно быстрое, как бы «скачкообразное» перемешивание вещества. Таким образом, в течение последних нескольких миллионов лет недра Солнца находятся в необычном, как бы переходном состоянии. Через несколько миллионов лет физические условия в недрах Солнца вернутся к первоначальному состоянию, до того как такое внезапное перемешивание произошло. Отвлекаясь пока от анализа причин, повлекших за собой такое «катастрофическое» перемешивание, рассмотрим, какие это повлечет за собой последствия для проблемы солнечных нейтрино. Вся суть гипотезы Фаулера состоит в том, что поток нейтрино от Солнца определяется «мгновенным» состоянием солнечных недр. Это означает, что если по какой-либо причине изменилась температура солнечных недр, это сразу же отразится на выходящем из Солнца потоке нейтрино. Совсем по-другому будет вести себя поток фотонного излучения от Солнца. Как уже неоднократно подчеркивалось выше, образовавшимся в центральных областях Солнца фотонам требуются миллионы лет, чтобы просочиться наружу и выйти в межзвездное пространство. Таким образом, в принципе, возможна такая ситуация: внезапно температура в центре Солнца падает, сразу же резко упадет поток нейтрино, в то время как светимость Солнца останется неизменной.

Идея Фаулера представляется нам в высшей степени плодотворной. Развитие гипотезы Фаулера содержится в работе Эзера и Камерона. Если предположить, что по какой-либо причине резко увеличилось энерговыделение в центре Солнца, обусловленное ядерными реакциями, то это повлечет за собой быстрое расширение солнечного ядра, температура которого понизится. Понижение температуры недр Солнца повлечет за собой уменьшение скорости всех термоядерных реакций. После того как избыточная энергия покинет пределы центральных областей Солнца, последние вернутся к своему первоначальному состоянию и поток солнечных нейтрино восстановится. Каким же образом может произойти резкое увеличение энерговыделения в центральной области Солнца? Оказывается, здесь большое значение может иметь такая ничтожно малая примесь к веществу солнечных

недр, как редкий изотоп гелия 3Не. В обычных условиях в недрах Солнца концентрация этого изотопа поддерживается динамическим равновесием между ядерными реакциями, ведущими к его образованию и уничтожению. Между тем, как уже обсуждалось в § 8, концентрация 3Не имеет большое значение для идущей в недрах Солнца протон-протон- ной реакции, обеспечивающей почти всю светимость Солнца. Оказывается, что чем выше температура, тем ниже равновесная концентрация 3Не. Отсюда непосредственно следует, что равновесная концентрация 3Не должна расти по мере удаления от центра Солнца, однако, начиная с некоторого расстояния от центра, рост концентрации 3Не прекращается: температура оказывается уже слишком низкой для того, чтобы равновесная концентрация успела установиться за те ~ 5 миллиардов лет, которые существует Солнце. Расчеты показывают, что максимальная концентрация изотопа 3Не достигается на расстоянии 0,6 солнечного радиуса. Представим себе теперь, что по какой-либо причине произошло внезапное перемешивание солнечных недр. Оно должно повлечь за собой значительное увеличение концентрации 3Не в области центра Солнца, так как туда поступит материал, где концентрация 3Не выше. Так как концентрация этого изотопа определяет скорость протон-протонной реакции, энерговыделение резко возрастает, и мы получим ситуацию, обсуждавшуюся выше.

Причиной внезапного перемешивания солнечных недр может быть постепенное накопление некоторой «неустойчивости», которая, дойдя до определенного предела, как бы «сбрасывается». Например, эта причина может быть связана с циркуляцией вещества солнечных недр в меридианном направлении, которая будет как бы «транспортировать» вращательный момент Солнца от его периферических слоев к центру. В результате центральные области Солнца начнут вращаться значительно быстрее, чем периферия. Такая ситуация должна приводить к неустойчивости, которая будет «сбрасываться» перемешиванием. Гипотеза рассматривалась японским теоретиком Сакураи. Важной особенностью этого механизма внезапного перемешивания является его периодичность. Ведь после того как накопившаяся неустойчивость будет «сброшена», она опять начнет накапливаться, так как «меридианная» циркуляция в солнечных недрах будет продолжаться! По оценкам Эзера и Камерона время между такими сравнительно быстрыми процессами перемешивания солнечных недр порядка сотни миллионов лет. Это означает, что за время эволюции нашего светила такие процессы происходили несколько десятков раз. Так как длительность фазы, когда по причине внезапного перемешивания температура солнечных недр становится ниже «нормальной», порядка десяти миллионов лет, то примерно 10% всего времени своей эволюции солнечные недра должны находиться в таком «минимальном» состоянии. Выходит, что нам особенно «повезло», раз мы живем в такую эпоху эволюции Солнца. Это замечание, как мы увидим ниже, может иметь гораздо более глубокий смысл, чем это кажется на первый взгляд…

Американские авторы выполнили численные расчеты вариаций нейтринного излучения Солнца со временем в процессе такого перемешивания. Результаты вычислений приведены на рис. 9.2. Как мы видим из этого графика, перед перемешиванием «нормальное» Солнце излучает поток нейтрино, который соответствовал бы примерно 10 единицам 8. п. и. на перхлорэтиленовом детекторе Дэвиса. В середине фазы перемешивания поток падает до значения, которое немного, но все-таки ниже наблюдаемого предела.

Однако Эзер и Камерон не ограничиваются только конкретизацией идеи Фаулера. Они идут значительно дальше. Дело в том, что расширение центральной области Солнца должно неизбежно отразиться на его светимости, т. е. на потоке его фотонного излучения. Кроме того, должен немного уменьшиться его радиус. Хотя температура поверхности Солнца почти не изменится, его светимость будет заметно уменьшаться во время фазы перемешивания. Результаты соответствующих вычислений приведены на рис. 9.3. Как видим, изменения светимости должны быть весьма значительными. Возникает совершенноестественный вопрос: а не отразились ли эти циклические «провалы» солнечной светимости на геологической истории Земли?

Если предлагаемое Фаулером объяснение отрицательного результата опытов по обнаружению солнечных нейтрино правильно, нынешний уровень солнечного излучения следует считать значительно более низким, чем «нормальный» уровень. Следующее из рис. 9.3 уменьшение уровня солнечной светимости против «нормального» должно соответствовать уменьшению равновесной температуры Земли в отношении                                                                                                               )1/4, где ^1

«нормальная» светимость, ^0 — современная. Отсюда вытекает, что в настоящее время температура нашей планеты должна быть градусов на 30 ниже, чем в «нормальные» периоды, когда мощность солнечного излучения близка к ^1. Следует, правда, заметить, что наличие на Земле мощного облачного слоя и атмосферной циркуляции должно значительно сгладить разницу средних температур Земли в «нормальное» и в наше время. По-видимому, с учетом этого обстоятельства разница должна быть равна 10—15 К. А это означает, что сейчас Земля переживает ледниковый период !

Но ведь это соответствует действительности! По геологическим данным ледниковый период на нашей планете длится вот уже два миллиона лет. Сейчас на Земле относительно тепло, потому что мы живем в сравнительно короткое (длительность около 15 000 лет) межледниковое время1.

Только сравнительно недавно геологи доказали, что оледенения Земли всегда носили глобальный характер, т. е. происходили одновременно на обеих ее полушариях.

Это означает, что причиной ледниковых периодов может быть только некоторый космический фактор. Если сейчас начинают понимать, что даже земная метеорология управляется солнечной активностью, можно ли сомневаться в том, что великие оледенения Земли были обусловлены гораздо более значительными изменениями уровня солнечного излучения? Мы говорим «оледенения» во множественном числе. Ведь уже давно известно, что в далеком геологическом прошлом Земли (например, в архейское время) также были великие оледенения. Доказано, что такие оледенения на нашей планете происходили периодически каждые 200—300 миллионов лет, причем длительность ледниковых периодов была около 10 миллионов лет. Как видим, именно к такой картине приводит развитие идеи Фаулера, выполненное Эзером и Камероном!

Приходится только удивляться неожиданным характерам взаимосвязи явлений в природе. Удивительным и совершенно неожиданным образом проблемы нейтринной астрономии могут быть связаны с фундаментальнейшей проблемой геологии, до последнего времени, несмотря на многочисленные попытки, остававшейся нерешенной.

Стоит еще подумать о том, что ледниковый период был «колыбелью» человечества. Вряд ли бы австралопитеки стали в итоге длительного процесса эволюции людьми, если бы не было ледникового периода. Даже если дальнейшее развитие науки приведет к другому объяснению отрицательных результатов опытов Дэвиса, объяснение ледниковых периодов, которое мы сейчас обсуждали, может остаться верным и поражать нас своим изяществом.