§ 18. Почему взрываются звезды?

До сих пор мы рассматривали только последствия вспышек сверхновых звезд. Взрывы звезд приводят к образованию в высшей степени интересных, отличающихся большим своеобразием туманностей. Эти туманности буквально «начинены» релятивистскими частицами, т. е., проще говоря,— первичными космическими лучами. Последние должны образовываться каким-то образом на самых сравнительно ранних этапах возникновения туманностей — остатков взрыва. Кроме того, как это было показано на примере Крабовидной туманности, «звездный остаток» взрыва продолжает в некоторых случаях мощную генерацию космических лучей, непрерывно «питая» образовавшуюся после взрыва туманность. Пока еще не совсем ясно, в какой степени это явление оказывается универсальным свойством «звездных остатков», хотя имеются достаточно серьезные основания связать его только со сверхновыми II типа.

Взрывы звезд имеют важное значение для физики и динамики межзвездной среды. Это огромное возмущение распространяется вначале с очень большой скоростью, которая постепенно уменьшается. Зона взрыва за несколько десятков тысяч лет распространяется на гигантскую область межзвездной среды, размеры которой исчисляются десятками парсек. В этой зоне физические условия резко отличаются от «невозмущенных». В ней существует весьма горячая плазма, нагретая до температуры в несколько миллионов кельвинов. Плотность космических лучей и напряженность магнитного поля в области, охваченной таким большим возмущением, значительно больше среднего значения, рассеиваясь в окружающей межзвездной среде, такое возмущение «обогащает» ее космическими лучами и вносит изменение в химический состав межзвездного газа.

Мы уже видели в § 16, что химический состав быстро движущихся волокон Кассиопеи А резко отличается от «обычного». Уже один этот наблюдательный факт говорит о том, что взрыв звезды является как бы «плавильным тиглем», в котором осуществляется «варка» сложных ядер. Следовательно, взрывы сверхновых звезд, выражаясь языком металлургов, осуществляют процесс «флотации» (обогащения) межзвездной среды тяжелыми ядрами.

Излишне подчеркивать, к каким необозримой важности последствиям приводит этот неуклонно действующий процесс. Ведь в «юности», еще до того как образовались галактики и звезды, Вселенная представляла собой довольно простую водородно-гелиевую плазму, возможно, с небольшой примесью дейтерия. Тяжелых ядер тогда еще не было. Это нашло свое отражение в химическом составе старейшего поколения звезд — субкарликов (см. § 12). В этой связи следует заметить, что основное обогащение межзвездной среды тяжелыми элементами произошло на самых ранних стадиях образования галактик. Тогда образовалось одновременно с нынешними субкарликами большое количество массивных и сверхмассивных звезд первого поколения, которые после десятка миллионов лет эволюции взрывались как сверхновые. Частота вспышек последних была в десятки раз больше, чем сейчас. По этой причине процесс обогащения межзвездной среды тяжелыми элементами в основном закончился довольно быстро, за «какие-нибудь» несколько сотен миллионов лет самой ранней истории нашей Галактики (а также, конечно, и других галактик)1.

Естественно спросить, а откуда известны эти важные детали «химической истории» нашей звездной системы? Оказывается, что эта летопись записана в метеоритах и земной коре. Тонкий химический анализ позволяет найти отношение концентраций радиоактивных изотопов 238и (уран-238), 244Р1 (плутоний-244), 235ТЕ (торий-235), а также двух изотопов йода — 1271 и 1291. Так как периоды полураспада у ядер этих изотопов достаточно хорошо известны, то по измеренной относительной концентрации можно получить возрасты ядер. В частности, из измеренного отношения концентрации [Р1]/[и] в образцах метеоритов следует, что эти сверхтяжелые ядра образовались 8,5—10 миллиардов лет назад, причем они образовались за сравнительно короткое время.

Очень интересные результаты получаются из анализа концентрации изотопов йода и находящегося в метеоритах тяжелого инертного газа ксенона, являющегося стабильным продуктом распада радиоактивного изотопа 1271. Этот анализ показывает, что возраст изотопов йода значительно (примерно вдвое) меньше возраста изотопов урана, плутония и тория. В противном случае сравнительно короткоживущий изотоп 1271 не сохранился бы. С другой стороны, из анализа содержания ксенона в образцах метеоритов следует, что уже через 180 миллионов лет после своего образования изотопы йода вошли в состав кристаллического вещества метеоритов. Так как не подлежит сомнению, что метеориты образовались одновременно с Солнечной системой (около 5 миллиардов лет назад), то можно сделать вывод, что вещество, из которого образовалась эта система, было обогащено незадолго до этого вспыхнувшей сверхновой. Заметим еще, что недавно обнаруженные различия в химическом составе у облаков межзвездной среды (см. § 2) естественно объясняются влиянием вспышек сверхновых.

После нашего небольшого экскурса в увлекательную область химической истории Галактики мы возвращаемся к основному вопросу о причинах взрывов звезд, наблюдаемых как феномен сверхновых. Изучение остатков таких вспышек открывает возможность оценить некоторые важные параметры взрывов, без знания которых научное рассмотрение этой проблемы было бы невозможно. К числу таких параметров относятся масса выброшенной при взрыве оболочки, кинетическая энергия этой оболочки и ее химический состав, наличие огромного количества релятивистских частиц в остатках взрыва и их энергетический спектр. Кроме того, исследования вспышек сверхновых в других галактиках методами современной астрономии (в частности, спектроскопии) позволяют определить полное количество излученной энергии, этой важнейшей характеристики взрыва. Эти же наблюдения дают возможность определить первоначальную скорость выброшенных при взрыве газов, что позволяет оценить «удельную энергию» взрыва, т. е. количество энергии, приходящееся на грамм вещества.

Прежде всего следует подчеркнуть, что настоящей теорией взрыва звезд современная наука пока еще не располагает. Эта проблема, как и можно было ожидать, оказалась очень трудной. Все же положение не следует признавать таким уж безнадежно плохим. Ряд узловых вопросов будущей теории уже в определенной степени разработан, а главное,— поняты, правда, в довольно общей форме, те физические условия в эволюционирующей звезде, которые, закономерно меняясь, должны с неизбежностью привести к космической катастрофе.

Переходя к существующим теоретическим представлениям, касающимся причины взрыва звезд, прежде всего остановимся на возможных источниках энергии. Естественнее всего считать, что таким источником является ядерная энергия.

Мы уже довольно подробно рассматривали этот источник для объяснения «спокойного» излучения звезд во время их пребывания на главной последовательности (см. § 8). Там же подчеркивалось, что после «исчерпания» водородного ядерного горючего в центральных областях звезды характер ее эволюции значительно усложняется. Равновесное состояние звезды на конечной стадии ее эволюции зависит от первоначальной массы,

которая предполагается неизменной на протяжении всей эволюции. Последнее предположение, однако, как мы уже раньше видели в § 13, заведомо не выполняется. Например, на стадии красного гиганта у реальных звезд наружные слои отделяются, а из внутренних образуется белый карлик.

Тем не менее полезно рассматривать идеализированную модель звезды, которая все время сохраняет свою массу и к тому же не вращается. Можно полагать, что такое упрощенное рассмотрение задачи позволит выявить ряд существенных особенностей заключительной фазы звездной эволюции. Расчеты показывают, что если масса такой «идеализированной» звезды меньше чем ~ 1,2 солнечной, то конечным продуктом эволюции являются белые карлики, о которых речь шла в § 10. Для звезд с массой, большей чем 1,2, но меньшей ~ 2,5 солнечной, конфигурация с вырожденным газом уже не является равновесной. Как это было показано еще в 1938 г. американскими физиками-теоретиками Оппенгеймером и Волковым, такая звезда после исчерпания запасов ядерного горючего должна катастрофически сжаться и превратиться в сверхплотный объект размерами около 10 км — в нейтронную звезду. Мы уже упоминали об этом в § 10. Необходимо, однако, подчеркнуть, что звезды с массой, превышающей некоторый предел, близкий к 2,5 солнечной массы, в конечном итоге должны катастрофически сжаться в точку (так называемые «черные дыры», о которых подробно будет рассказано в § 24).

Таким образом, в зависимости от первоначальной массы идеализированной модели звезды теория предсказывает три типа конечного состояния «мертвых» (т. е. исчерпавших свою энергию) звезд:

1) белые карлики,

2) нейтронные звезды,

3) черные дыры.

Первые известны астрономам вот уже свыше 70 лет. Нейтронные звезды после долгих безуспешных попыток были открыты только в 1967 г. Наконец, есть некоторые основания полагать, что несколько известных объектов отождествляются с «черными дырами» (см. § 24). Таким образом, мы видим, что хотя «идеализированная» модель звезды и является крайне упрощенной, существование всех трех разновидностей «мертвых» звезд она предсказала правильно. Первоначальная теория, однако, не указывала на конкретные пути образования «мертвых» звезд.

По всем данным вспышки сверхновых связаны с конечным этапом звездной эволюции. Это видно хотя бы из весьма своеобразного химического состава волокон Кассиопеи А. Из сказанного следует, что можно ожидать «генетическую» связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Последнее обстоятельство «подозревалось» давно, но только около 15 лет назад были получены прямые наблюдательные данные: в остатках сверхновых обнаружены нейтронные звезды.

Естественнее всего считать, что огромное количество энергии, освобождаемое при вспышках сверхновых, имеет ядерное происхождение. Однако далеко не всякое ядерное горючее может быть, хотя бы в принципе, ответственно за взрыв звезды. Прежде всего это относится к водороду — основному ядерному горючему, поддерживающему путем соответствующих термоядерных реакций «спокойное» излучение звезд на главной последовательности. Дело в том, что хотя выделение энергии при полном превращении водорода в гелий и очень велико (6 1018 эрг/г), оно происходит достаточно меДленно. Поэтому взрыва (т. е. очень быстрого освобождения большого количества энергии) в этом случае произойти не может.Медленность термоядерных реакций на ядрах водорода объясняется тем, что цепь таких реакций (см. § 8) в качестве необходимых звеньев содержит процесс ^-распада. Последние же протекают весьма медленно и их нельзя никаким образом «ускорить»: ведь это же «спонтанные», т. е. самопроизвольные процессы. Например, даже при самой высокой температуре реакция превращения водорода в дейтерий: происходит из-за ^-распада очень медленно. Однако при высоких температурах благодаря уже рассматривавшейся в § 8 реакции 34Не 12С и последующих реакций ядер углерода с ядрами гелия (альфа-частицами) вида может возникнуть очень большое количество легких ядер углерода, кислорода и неона. Ядра этих легких элементов могут уже при температуре около ста миллионов кельвинов вступить в реакции с протонами, сопровождаемые значительным, а главное, быстрым выделением энергии, так как такие реакции не сопровождаются ^-распадом. Однако этим способом каждое ядро легкого элемента может последовательно присоединить к себе не более трех-четырех протонов, что обеспечит выход энергии около 10—20 МэВ на одно ядро. Для более тяжелых ядер, получаемых путем последовательного присоединения протонов, наличие ^-распада сильно замедляет реакцию, отчего она потеряет свой «взрывной» характер. Все же даже 3—4 последовательных присоединения протонов дают неплохую «взрывчатку». Весь вопрос, однако, заключается в том, хватает ли у звезды нужного количества ядер легких элементов, чтобы при их взрыве (как это может случиться, мы пока не обсуждаем) выделилось нужное количество энергии.

Если химический состав звезды, которая должна взорваться, такой же, как у Солнца, то в каждом грамме ее вещества содержится примерно 5 1020 легких ядер. Если каким-то образом взрывная реакция на легких ядрах описанного выше вида произойдет, то удельный выход энергии будет ~1016 эрг/г. Это мало! Ведь в случае сверхновых II типа удельный выход энергии по крайней мере в 10 раз больше. Если мы на минутку вообразим себе, что наше Солнце взорвалось бы вследствие такой реакции, то выделилась бы энергия ~ 1049 эрг, а это все-таки в десять раз меньше, чем выделяется энергии при вспышках сверхновых I типа. Если предположить, что по какой-то неизвестной причине недра Солнца нагрелись бы до температуры в сто миллионов кельвинов, то скорее всего последовал бы взрыв. Однако скорость разлета газов не превышала бы, скажем, 500 км/с, а это по крайней мере в десять раз меньше, чем наблюдаемая скорость разлета при вспышке сверхновых (см. § 15).

Если мы хотим объяснить катастрофическое выделение энергии при вспышке сверхновой ядерными реакциями (а такие взрывные реакции могут происходить только с ядрами легких элементов), то необходимо предположить, что химический состав недр взорвавшейся звезды должен быть резко отличен от солнечного. Это различие должно выражаться в несравненно большем обилии легких элементов (азот, кислород, углерод, неон) по отношению к водороду, чем на Солнце. Например, если на Солнце на каждую тысячу атомов водорода приходится только один атом какого-нибудь из этих элементов, то у звезды, которая должна взорваться, количество легких атомов должно составлять уже 2—3% от количества атомов водорода. Но эта звезда когда-то образовалась из межзвездной среды, химический состав которой почти такой же, как у солнечной атмосферы. Это означает, что в процессе эволюции химический состав звезды, которая должна взорваться, подвергся благодаря разного рода ядерным реакциям весьма значительному изменению. Это изменение как бы «подготовило» звезду для взрыва, образовав там потенциальный «пороховой погреб», наполненный взрывоопасным ядерным горючим.При очень высоких температурах, которые неизбежно должны возникнуть, когда пойдут реакции на легких ядрах (речь идет о температуре порядка миллиарда кельвинов), вещество начнет обладать взрывной неустойчивостью по причине очень быстро протекающих реакций типа и аналогичных реакций для 16О, 20 Хе и других легких элементов. Характерное время для таких реакций около 1 с, а удельный выход энергии достигает 5 1017 эрг/г. Если бы, например, взорвалась масса такого вещества, равная 0,1 массы Солнца, то выделилось бы ~ 1050 эрг энергии, что уже близко к энерговыделению во время вспышек сверхновых I типа.

Таким образом, мы можем сделать вывод, что потенциально возможным ядерным горючим, ответственным за взрывы звезд, может быть только вещество, в высокой степени обогащенное легкими элементами. Обычная космическая «микстура» с химическим составом, подобным солнечному, не может ни при каких обстоятельствах привести к ядерному взрыву звезды. Пока, однако, совершенно открытым остается вопрос, каким же образом реализуется «подготовка» условий, необходимых для ядерного взрыва.

Наконец, остается возможность, что главным источником взрыва звезд является освобождение не ядерной энергии, а гравитационной при катастрофическом сжатии. Скорее всего, имеют значение оба вида энергии, хотя, как мы уже говорили выше, вся картина взрыва звезды еще далека от ясности. Тем не менее мы все же остановимся на некоторых теоретических разработках, которые, несомненно, будут полезны при создании в будущем (может быть, недалеком) теории взрыва звезд.

Английские теоретики Хойл и Фаулер рассмотрели интересную модель звезды накануне ее взрыва («предсверхновая»). Они ограничились вначале случаем сравнительно массивной звезды, М = 30 солнечных масс, причем за время эволюции перемешивания вещества не было. У таких звезд вещество в центральной части невырожденно, так как плотность там сравнительно невелика (см. § 12).

Можно полагать, что эти расчеты имеют отношение к проблеме вспышек сверхновых II типа. На заключительной фазе эволюции температура вещества в центральных областях такой звезды (вернее, модели звезды) очень велика, порядка нескольких миллиардов кельвинов. При такой температуре весь водород и гелий уже выгорели. Ядерные реакции идут очень быстро. Равновесное состояние вещества характеризуется преобладанием ядер элементов группы железа, имеющих минимальное значение «коэффициента упаковки». Ядро такой звезды окружено «мантией», температура которой значительно ниже, например, меньше миллиарда кельвинов. Химический состав этой оболочки резко отличен от химического состава ядра. В «мантии» преобладают легкие элементы — кислород, азот, неон, т.е. потенциальное ядерное горючее, необходимое для взрыва звезды. Наконец, «мантия» окружена самой наружной, водородно-гелиевой оболочкой. По расчетам этой модели масса центрального железного ядра составляет 3 солнечные массы, масса кислородной мантии 15, а все остальное приходится на долю довольно разреженной наружной водородно-гелиевой оболочки.

Условия для ядерного взрыва создаются тогда, когда в процессе эволюции железное ядро начнет катастрофически сжиматься (коллапсировать). Характерное время такого сжатия близко к времени свободного падения и составляет около 1 с. При катастрофическом сжатии ядра нарушается механическое равновесие и остальной части звезды, т. е. вес ее выше лежащих слоев уже не уравновешивается давлением газа снизу, и тогда наружные слои звезды начнут падать по направлению к ее центру. Через небольшой промежуток времени (тоже около секунды) кинетическая энергия падающей оболочки превратится в тепловую, что повлечет за собой быстрый ее нагрев. Тем самым создадутся условия для ядерного взрыва находящихся там легких элементов.

Весьма важным, однако, является то обстоятельство, что катастрофическое сжатие ядра звезды должно произойти за время меньшее, чем то, которое нужно для «спокойной» перестройки оболочкой своей структуры без взрыва. В § 6 довольно подробно уже обсуждали этот вопрос в связи с проблемой нарушения механического равновесия звезды, вызванного мгновенным «местным» выделением некоторого количества энергии. Время «спокойной» перестройки структуры звезды определяется скоростью звука, проходящего через нее. Эта скорость — порядка

(ср. § 6). В нашем случае, при размерах «мантии» звезды 3 109 см скорость из ~ 109 см/с, а время прохождения волны сжатия через звезду ~ К^з~ 3 с. Теперь важно понять, что если бы при сжатии ядра стала достаточно быстро расти температура его вещества, то сжатие не происходило бы катастрофически быстро. При этом звезда в каждый момент времени успевала бы «подстроить» свою структуру под изменившиеся условия в ядре и никакого взрыва не произошло бы. Об этом мы довольно подробно рассказывали, когда рассматривалось равновесие звезды (см. § 6).

Катастрофическим сжатие будет только тогда, когда у ядра имеется «холодильник», отбирающий у него выделяющуюся при сжатии тепловую энергию. Заметим, что мощность такого «холодильника» должна быть исключительно высокой, порядка 1018 эрг/г.

В настоящее время можно указать по крайней мере на два типа таких «холодильников». На первый обратили внимание Хойл и Фаулер. Он сводится к огромному поглощению энергии при диссоциации ядер железа на альфа-частицы и нейтроны. При повышении температуры такой процесс диссоциации неизбежен и будет сопровождаться поглощением огромного количества «скрытой теплоты диссоциации». Из каждого ядра железа получается 13 альфа-частиц и 4 нейтрона. Энергия связи нуклонов в ядре железа равна 8,79 МэВ, в то время как средняя энергия связи одного нуклона в полученной после диссоциации смеси альфа-частиц и нейтронов всего лишь 6,57 МэВ. Следовательно, чтобы разрушить (диссоциировать) железо на альфа-частицы и нейтроны, нужно истратить 2,22 МэВ на нуклон энергии или 2 1018 эрг/г. Что и говорить, превосходный холодильник! Его «работа» будет состоять в том, что как только при сжатии температура железного ядра поднимется до некоторой величины, ее дальнейший рост «надолго» прекратится, так как выделяющаяся при сжатии гравитационная энергия пойдет на диссоциацию ядер железа. А остановка нагрева сжимающегося ядра как раз и создаст благоприятные условия для детонации «порохового погреба» звезды, так как при этом ядро будет катастрофически сжиматься, а оболочка, не успевая «спокойно» перестроить свою структуру, станет падать к центру звезды, быстро при этом нагреваясь. Из-за этого пойдут взрывные реакции на легких элементах, входящих в состав «мантии».

Такова общая картина взрыва массивной звезды, как она представляется из исследований Хойла и Фаулера. Из этой картины следует, что прежде чем взорваться, звезда должна была уже далеко продвинуться в своей эволюции. Существенно, что при этом радикально изменится химический состав ее недр. В частности, свыше половины массы звезды, представлявшей в начале эволюции водородно-гелиевую смесь, превратилось в легкие элементы. Непосредственной причиной, вызывающей взрыв звезды, является катастрофическое сжатие ее железного ядра в присутствии такого «холодильника», каким является скрытая теплота диссоциации железа на гелий и нейтроны. По-видимому, такой путь эволюции может быть типичным для достаточно массивных звезд. Поэтому описанная выше теория должна соответствовать вспышкам сверхновых II типа. Следует, однако, подчеркнуть, что несмотря на содержащиеся в этой теории ценные идеи, ее еще никак нельзя рассматривать как полное описание процессов, происходящих при вспышках сверхновых

II типа. Так, например, эта теория совершенно не учитывает, что если вещество нагреется до температуры в несколько миллиардов кельвинов, там начнут в очень большом количестве образовываться нейтрино и антинейтрино. Эти частицы будут выходить из звезды, унося с собой огромное количество энергии.

Ядерные реакции, приводящие к образованию нейтрино (п) и антинейтрино (п), выглядят следующим образом (так называемый «урка-процесс»):

Уже начиная с температуры Т 0,5 109 К нейтринное излучение массивных звезд превосходит их фотонное излучение. По мере повышения температуры сжимающегося ядра мощность нейтринного излучения звезды растет в огромной степени. Особенно оно увеличивается после того как железо в центральных частях звезды окажется диссоциированным, т. е. на более поздней стадии сжатия. Так как после такой диссоциации железный «холодильник» перестанет существовать, начнется новое, довольно быстрое повышение температуры ядра. Когда последняя повысится до 20 миллиардов кельвинов (к тому времени плотность ядра уже будет около 1010 г/см3), начнется расщепление альфа-частиц и появится значительное количество свободных (т. е. не связанных в ядрах) протонов и нейтронов. Это приведет к резкому увеличению скорости образования нейтрино и антинейтрино (см. формулу (18.1)). Они будут выходить из ядра, унося оттуда огромное количество энергии. Тем самым появится новый, исключительно мощный «холодильник».

Огромная энергия нейтринного излучения черпается из гравитационной энергии сжимающегося ядра. Покидающие звезду нейтрино и антинейтрино имеют энергии около 10 МэВ, что значительно выше, чем энергия солнечных нейтрино (см. §§ 8 и 9). Когда температура сжимающегося ядра достигнет 40 миллиардов кельвинов, а плотность будет ~ 3 1011 г/см3, возникнет новая ситуация: ядро звезды перестанет быть прозрачным для нейтрино. Последние будут поглощаться протонами и нейтронами (реакция (18.1), только читаемая справа налево!). Тем самым новый «холодильник» выключается, резко поднимается температура ядра, а процесс сжатия сильно замедляется. По-видимому, сжатие ядра прекращается совсем, когда его плотность достигает величины ~ 3 1013 г/см3, а температура превосходит сто миллиардов кельвинов. Падающая на центр звезды оболочка останавливается, быстро нагревается, и «пороховой погреб» (т. е. легкие элементы в мантии) взрывается. Такова общая картина взрыва массивной звезды с учетом процессов образования нейтрино и антинейтрино в ее горячих, сжимающихся недрах. Заметим еще, что сжимающееся ядро может быстро перестать сжиматься еще по совершенно другой причине. Дело в том, что пока мы еще не учитывали вращения сжимающейся звезды. На основании известного из механики закона сохранения вращательного момента по мере сжатия звезды линейная скорость ее вращения быстро растет. Может возникнуть такая ситуация, что возникающие при этом огромные центробежные силы прекратят сжатие ядра звезды, как бы «застабилизировав» его. Тем самым остановится и сильно нагреется падающая на центр звезды «мантия» и создадутся условия для ядерного взрыва.

Не следует забывать еще, что вся описанная выше сложная физическая картина сжатия звезды, предшествующая ее взрыву, происходит за ничтожно малое время, около одной десятой секунды. За это время катастрофически сжимающаяся звезда излучит огромное количество нейтрино. Расчеты показывают, что полная энергия этих нейтрино достигает значения ~ 1052 эрг, т. е. почти в сто раз больше кинетической энергии выброшенной оболочки звезды! Это примерно в тысячу раз больше, чем энергия нейтринного излучения Солнца за все время его эволюции, т. е. за 5 миллиардов лет. По крайней мере 99% освободившейся при катастрофическом сжатии звезды гравитационной энергии переходит в нейтрино и только едва 1% — в те виды энергии, которые наблюдаются астрономами. Заметим, что энергичные нейтрино легче взаимодействуют с веществом, т. е. их легче

обнаружить экспериментально. Если бы где-то в Галактике вспыхнула сверхновая II типа на расстоянии нескольких тысяч парсек от нас, и мы знали бы момент вспышки с точностью в несколько сотых секунды, то существующая на Земле приемная аппаратура (типа описанной в § 9) позволила бы эту вспышку зарегистрировать. Это имело бы огромное значение для понимания природы взрыва звезд. Пока, однако, о таком эксперименте мы можем только мечтать.

Спецификой структуры звезд со сравнительно небольшой массой на поздней стадии эволюции является наличие у них весьма плотного вырожденного ядра (см. § 11). В этом случае катастрофическое сжатие центральных областей звезды обусловлено поглощением вырожденных электронов ядрами, которое имеет место при достижении эволюционирующей звездой некоторой, достаточно высокой плотности, большей чем 1011 г/см31. При этом образуется большое количество нейтронов. Так же как и в случае массивных звезд, не поддерживаемая давлением вырожденных электронов оболочка «обрушится» и начнет падать к центру звезды. Там, где эта оболочка ударится о сжимающееся ядро, произойдет сильный разогрев вещества (до 5 1011 К). По этой причине возникнет мощное нейтринное излучение («урка-процесс»; см. формулу (18.1)), которое поглотится оболочкой. Тем самым оболочка сильно нагреется, и произойдет взрыв из-за ядерных реакций на легких элементах. В этой картине, однако, многое остается не ясным. Например, столь же возможно, что нейтрино образуется во всей толще ядра, которое должно быть достаточно горячим.

Реальная картина взрыва звезд сравнительно малой массы может сильно отличаться от намеченной выше схемы. Так, существенную роль может играть магнитное поле сжимающейся звезды и, особенно, вращение ее ядра. В процессе сжатия магнитное поле может достигнуть очень большого значения, порядка нескольких миллиардов эрстед (о причинах этого см. § 20). При некоторых условиях магнитное поле может переносить освобождающуюся при сжатии гравитационную энергию наружу, в оболочку, что вызовет сильный нагрев и детонацию последней. Вообще, магнитное поле в астрофизике довольно часто играет роль «приводного» ремня для транспортировки значительного количества энергии.

Теория взрыва звезд должна не только указать на причину взрыва в связи с предыдущей эволюцией звезды, не только оценить величину энергии взрыва, но и объяснить кривые блеска сверхновых. Почему, например, так похожи друг на друга кривые блеска сверхновых I типа? И почему столь разнообразны кривые блеска сверхновых II типа? Надо сказать, что эти вопросы для теоретиков оказались очень трудными. Один путь решения этой проблемы сводился к рассмотрению распространения сильной ударной волны, возникшей после детонации «мантии» в протяженной наружной оболочке звезды с уменьшающейся по мере удаления от ее центра плотностью. В таком случае свойства ударной волны определяются энергией взрыва и законом уменьшения плотности в наружной оболочке.

Выход сильной ударной волны на поверхность звезды и наблюдается как явление вспышки сверхновой. По этой причине изучение «кривых блеска» сверхновых позволяет, в принципе, понять характер взрыва и выяснить природу взрывающихся звезд.

Начиная с середины 60-х годов советские теоретики В. С. Имшенник и Д. К. Надежин со своими сотрудниками занимались нелегкими расчетами распространения ударных волн в наружных слоях сверхновых звезд. При этом сам механизм взрыва не конкретизировался — в этом не было нужды. Достаточно было только предположения о «мгновенном» (проще говоря — достаточно быстром) выделении нужного количества энергии в центре взрывающейся звезды, поскольку в случае распространения сильной ударной волны в

среде с уменьшающейся наружу плотностью имеет место очень слабая зависимость газодинамических характеристик (давление, поле скоростей и пр.) от особенностей взрыва. Нужно только задать полную энергию взрыва и закон падения плотности в звезде.

Результаты таких расчетов оказались весьма интересными. Прежде всего, стало очевидным, что если взрыв происходит в компактной, достаточно массивной звезде (например, звезде главной последовательности), то кривые блеска качественно отличаются от наблюдаемых. Прежде всего, максимум блеска оказывается очень резким и длится не больше чем 20 минут, в то время как согласно наблюдениям длительность максимума 1—2 суток. Кроме того, максимальный блеск оказывается очень незначительным — в сотни раз меньше наблюдаемого.

Для того чтобы получить кривую блеска, более или менее сходную с наблюдаемой (т. е. существенно увеличить длительность в максимуме и светимость), необходимо предположить, что звезда перед взрывом является гигантом или, лучше, сверхгигантом. Расчеты показывают, что при сильном взрыве радиус звезды почти не увеличивается — происходит только сильный нагрев атмосферы звезды ударной волной. В принципе, вместо красного сверхгиганта с протяженной атмосферой можно принять модель звезды, у которой происходит медленное истечение вещества с ее поверхности, в результате чего вокруг звезды образуется весьма протяженная оболочка, причем ее плотность уменьшается наружу примерно обратно пропорционально квадрату расстояния.

Развитая советскими авторами «гидродинамическая» теория взрыва массивной звезды хорошо согласуется с современной теорией звездной эволюции. Согласно этой теории (см. § 12) фаза красного гиганта или сверхгиганта является неизбежной. Начало этой фазы связано с коренной перестройкой структуры центральных областей звезды, создающей предпосылки для гравитационного коллапса ее ядра. Следовательно, образование весьма протяженной оболочки и способного к коллапсу ядра происходят «в одну эпоху» жизни звезды. Однако совпадение этих явлений вовсе не обязательно должно быть строгим. Возможно и даже весьма вероятно, что сравнительно кратковременная фаза красного гиганта закончится до гравитационного коллапса ядра. В этом случае, после потери наружной, богатой водородом оболочки, образуется довольно компактная «гелиевая» звезда типа Вольфа — Райе. Явление гравитационного коллапса, конечно, не зависит от того, есть ли вокруг звезды протяженная водородная оболочка или нет. Мы приходим к представлению, что почти все массивные звезды типа Вольфа — Райе должны взрываться как сверхновые. Так как длительность фазы Вольфа — Райе у массивных звезд сравнима с длительностью фазы красного гиганта, следует ожидать, что число взрывающихся звезд типа Вольфа — Райе должно быть сравнимо с числом взрывающихся массивных сверхгигантов.

Но, на основании расчетов Имшенника и Надежина, взрывающиеся компактные звезды типа Вольфа — Райе совершенно непохожи ни на какие сверхновые. Они на 5—6 величин слабее (в максимуме) и имеют ненаблюдаемо-узкий максимум на кривой блеска. Мы приходим, таким образом, к представлению о необходимости существования «карликовых сверхновых», открытых на кончике пера советскими теоретиками. Очень похоже, что таким объектом является Кассиопея А, а также Сверхновая 1181 г., светимость которой в максимуме была в сотню раз меньше обычной. Другим важным выводом из расчетов советских авторов является утверждение, что в тесных двойных системах не могут вспыхивать сверхновые II типа, так как перетекание масс в процессе эволюции компонент препятствует образованию протяженной, богатой водородом оболочки.

Необходимо еще раз подчеркнуть, что основным предположением, сделанным при расчетах распространения ударной волны в наружных слоях звезды, является постулат о мгновенном выделении энергии в ее центральной части. Можно, однако, предложить по крайней мере два механизма постепенного (т. е. достаточно медленного) выделения энергии. Первый механизм связан с образованием в центре коллапсирующей звезды быстро вращающегося намагниченного пульсара. Тормозясь, такой пульсар будет непрерывно

выделять энергию в виде жестких фотонов и корпускул. Мощность энерговыделения молодого пульсара более чем достаточна для «накачки» энергии в оболочку пульсара, но конкретные условия работы такой «машины» еще далеко неясны.

Другим механизмом непрерывной накачки энергии в оболочку взорвавшейся звезды является радиоактивность образующихся в процессе коллапса некоторых ядер. Эта гипотеза с очевидной легкостью объясняет экспоненциальный характер кривых блеска сверхновых I типа после максимума: показатель экспоненты определяется периодом полураспада соответствующего «рабочего изотопа»). В качестве последнего Бааде и др. еще в 1956 г. предложили… трансурановый элемент калифорний-254. Ядра этого изотопа спонтанно делятся на осколки с энергией ~ 200 МэВ. Гипотеза эта, единственным обоснованием кото- 254

рой является подходящее значение периода полураспада СГ, по ряду причин оказалась совершенно несостоятельной.

На смену 254СГ пришли другие «рабочие вещества». В последние годы в качестве такого вещества теоретики используют радиоактивный изотоп никеля-56, дающий начало цепи Р-радиоактивных превращений:

Период полураспада 56 N составляет 6,1 суток, в то время как у 56Со он равен 77 суткам. В процессе этих распадов основная часть энергии выделяется в виде д-квантов с энергией ~ 1 МэВ и только 20% энергии выделяется в виде быстрых позитронов.

Образование в процессе коллапса плотного ядра, почти целиком состоящего из столь «экзотической» субстанции, как радиоактивный 56№, представляется вполне возможным и даже закономерным. Можно показать, что для обеспечения энергетики взрыва масса такого ядра должна быть ~ 0,5М®. Теоретические расчеты кривых блеска в случае «медленного» выделения энергии, выполненные советскими авторами, доказывают, что такой взрыв в ядре «компактной звезды» (даже белого карлика) вполне может объяснить явление вспышки сверхновой I типа.

Очень серьезным наблюдательным подтверждением справедливости гипотезы «радиоактивного никеля» является обнаружение в «послемаксимальном» спектре сверхновой 1972-е многочисленных эмиссионных линий железа. Решающим аргументом является недавнее обнаружение резонансных ультрафиолетовых линий поглощения в спектре горячей звезды, на которую проектируется остаток вспышки Сверхновой 1006 г.

Из того факта, что сверхновые II типа наблюдаются преимущественно в спиральных рукавах, следует вывод, что первоначальная масса этих взрывающихся звезд должна быть больше 7М . Напротив, сверхновые I типа, как уже отмечалось в § 15, наблюдаются во всех галактиках, в частности эллиптических, а в спиральных галактиках к рукавам спиральной структуры отнюдь не концентрируются. Из последнего обстоятельства следует вывод, что их массы должны быть меньше 7М-..

Как уже говорилось раньше, в эллиптических галактиках вспыхивают только сверхновые I типа. Вспышки сверхновых в таких галактиках нелегко объяснить, так как процесс звездообразования там давно закончился. В Е-галактиках в современную эпоху должны быть только звезды с массой, меньшей солнечной, а такие звезды вспыхивать не могут. Тем не менее они вспыхивают. Шацман предложил изящную гипотезу, согласно которой вспышки в этих галактиках происходят в тесных двойных системах, одной из компонент которых является белый карлик. Когда в процессе эволюции вторая компонента начнет разбухать, газ станет из нее перетекать на белый карлик, совсем как в случае обычных новых звезд (см. § 14). После того как масса белого карлика превысит чандрасекаровский предел, произойдет взрыв.

С другой стороны, из наблюдений следует, что вспышки сверхновых I типа в спиральных и неправильных галактиках связаны с процессом звездообразования. Отсюда следует,

что массы вспыхивающих звезд должны лежать в пределах 3-7 Мд. Таким образом, с одной стороны, взрываются белые карлики, массы которых равны чандрасекаровскому пределу (в Е-галактиках), а с другой — сравнительно массивные звезды (в спиральных и неправильных галактиках), причем спектры и кривые блеска в обоих случаях совершенно одинаковы! По мнению автора этой книги, парадокс этот разрешается следующим образом. Если в процессе эволюции звезды в ней образовалось ядро, масса которого с точностью 1% равна чандрасекаровскому пределу, Мсь, после отделения наружной оболочки оно взорвется как сверхновая I типа. Если же массы ядер больше Мсь, то будет иметь место взрыв сверхновой II типа. Наконец, если масса ядра меньше Мсь никакого взрыва сверхновой не будет и образуется белый карлик. Таким образом, открывается возможность понять явления вспышек сверхновых разных типов с единой точки зрения.