Верховенство ДНК

Вы, вероятно, заметили, что в двух предыдущих параграфах я ни слова не сказал о ДНК. Почему? Потому что источником движения, обусловливающего различные формы жизнедеятельности клетки, является вовсе не ДНК, а изменение электрической заряженности белков. Откуда же взялось широко распространенное представление о том, что гены «управляют» всем живым? Дарвин в «Происхождении видов» предположил, что наследственные факторы, передающиеся из поколения в поколение, определяют, какие именно признаки будут наблюдаться у потомков. Авторитет Дарвина был столь велик, что ученые сломя голову бросились на поиски этих самых «управляющих жизнью» наследственных факторов.

В 1910 году путем тщательных микроскопических исследований удалось установить, что передающаяся из поколения в поколение наследственная информация заключена в хромосомах — нитевидных структурах, которые становятся видны в клетке непосредственно перед тем, как она разделится на две «дочерние» клетки. Хромосомы входят в состав самой большой из органелл клетки — ядра. Изолировав ядро, ученые забрались внутрь хромосом и обнаружили, что они состоят всего из двух типов молекул — белка и ДНК.

В 1944 году ученые определили, что наследственная информация содержится в ДНК хромосом [Avery, et al, 1944; Lederberg 1994]. Эксперименты, позволившие сделать этот вывод, были чрезвычайно изящными. Исследователи выделили ДНК одного вида бактерий — назовем его видом А — и добавили к культуре, содержащей только бактерии вида Б. Очень скоро у бактерий вида Б стали проявляться наследственные признаки, ранее свойственные виду А. Когда стало известно, что для передачи наследственных признаков не нужно ничего, кроме ДНК, эта молекула заняла в науке поистине выдающееся место.

Оставалось определить структуру нашей «выдающейся» молекулы. С этой задачей справились Джеймс Уотсон и Френсис Крик. Молекулы ДНК оказались длинными нитевидными цепочками, составленными из азотсодержащих химических соединений четырех видов — так называемых оснований (аденина, тимина, цитозина и гуанина; А, Т, С и G).

Уотсон и Крик сделали вывод, что последовательность аминокислот в остове белковой молекулы определяется последовательностью оснований в молеку­ле ДНК [Watson and Crick 1953]. Длинная цепочка молекулы ДНК подразделяется на отдельные гены — участки, служащие шаблонами для синтеза конкретных белков. Так были обнаружены коды воспроизводства белковых «машин» клетки!

Уотсон и Крик объяснили, почему ДНК идеально подходит для передачи наследственной информации. В обычном состоянии каждая нить ДНК переплетается с еще одной нитью ДНК, образуя свободно свернутую конфигурацию — так называемую двойную спираль. Характерная особенность этой двойной спирали в том, что последовательности оснований в обеих нитях ДНК являются зеркальными отражениями друг друга. Когда нити ДНК расплетаются, каждая из них содержит информацию, необходимую для воспроизводства ее точной комплементарной копии. То есть путем разъединения нитей двойной спирали молекулы ДНК становятся самокопирующимися. Это наблюдение позволило предположить, что ДНК самостоятельно управляет своим воспроизводством — что она как бы сама себе «хозяйка».

Исходя из догадки, что ДНК управляет собственным воспроизводством и несет в себе программу выработки белков, Френсис Крик сформулировал Главную догму биологии: положение о главенствующей роли ДНК. Это положение красной нитью пронизывает все научные тексты и, можно сказать, высечено на скрижалях науки, подобно библейским заповедям.

Согласно вышеуказанной догме, ступенькой ниже восседающей на царском троне ДНК располагается ее короткоживущая «ксерокопия» — РНК (рибонуклеиновая кислота). Именно она служит физическим шаблоном для кодирования аминокислотной последовательности, составляющей остов белковой молекулы.

Главная догма биологии определяет образ мышления эпохи генетического детерминизма. Коль скоро облик живого организма определяется характером его белков, а белки кодируются ДНК, последнюю вполне логично считать «первопричиной» тех или иных черт организма.