Библиотека soteria.ru
Трактат о едином Боге
Фома Аквинский
Дата публикации: 11.09.16 Просмотров: 17929 Все тексты автора Фома Аквинский
Раздел 4. Может ли существовать бесконечное множество?
С четвертым дело обстоит следующим образом.
Возражение 1. Кажется, что актуально бесконечное множество возможно. Ведь нет ничего невозможного в том, чтобы на-ходящееся в потенции стало актуальным. И число можно умножать до бесконечности. Отсюда следует: вполне возможно, чтобы существовало актуально бесконечное множество.
Возражение 2. Далее, любая частная вещь, относящаяся к любому виду, может быть приведена к актуальному бытию. Но видов фигур — бесконечное множество. Выходит, нет ничего невозможного в том, чтобы существовало бесконечное множество актуальных фигур.
Возражение 3. Кроме того, если вещи не противоположны друг другу, они друг другу и не препятствуют. Но из предположения о существовании множества вещей [отнюдь] не следует, что нет множества других [вещей], которые [вовсе] не противоположны этим. Следовательно, те другие вполне могут сосуществовать с этими, и так далее до бесконечности. Из этого ясно, что актуально бесконечное число вещей возможно.
Этому противоречит сказанное [в Писании]: «Ты все расположил мерою, числом и весом» (Прем. 11,21).
Отвечаю: на этот вопрос существуют две точки зрения. Некоторые, например Авиценна и [азали, полагали, что безусловное существование актуально бесконечного множества невозможно, но случайное бесконечное множество — допустимо. Множество, говорили [они], бесконечно безусловным образом тогда, когда бесконечное множество необходимо для существования чего-то еще. А этого-то как раз и не может быть, поскольку тогда бы было необходимым существование чего-то, чье бытие зависело бы от бесконечности; но в таком случае его возникновение никогда бы не произошло, ибо невозможно произойти от бесконечного количества следствий.
Случайное же бесконечное множество, говорят, это такое [бесконечное множество], существование которого не необходимо, а случайно. Это можно проиллюстрировать на примере работы плотника, предполагающей [наличие] некоторого абсолютного множества, а именно: [плотницкого] искусства в душе [плотника], движений руки, молотка [и т. п.]; если бы все это было повторено бесконечное число раз, плотник никогда бы не прекратил своей работы, поскольку она проистекала бы от бесконечного количества причин. Но множество молотков, коль скоро один может быть поврежден и заменен другим, является случайным множеством; ведь это происходит случайно, что используются несколько молотков, и это не так уж и важно, один ли, два, илигораздо больше, или даже бесконечное число, если работа продолжается бесконечно долго. Таким-то образом, говорят, и может получиться случайное бесконечное множество.
Это, однако, невозможно; ведь каждое [отдельное] множество принадлежит к какому-либо из видов множеств. Затем, виды множеств должны соотноситься с видами чисел. Но виды чисел не бесконечны: каждое число единственно в своем виде. Следовательно, здесь невозможно ни безусловное, ни случайное актуально бесконечное множество. То же можно сказать и о множествах в природе сотворенного; все сотворенное суть [следствие] чистого акта Творца, ибо ни один действователь не действует бесцельно. Таким образом, все тварное постигается через определенное число. Выходит, существование актуально бесконечного множества, даже случайного, невозможно. Но потенциально бесконечное множество возможно, поскольку увеличение множества есть следствие деления величины: чем больше производится делений, тем большее число вещей образуется как результат [этой операции]12. Следовательно, коль скоро бесконечность может быть задана потенциально как результат деления непрерывной величины, то [значит, здесь] речь идет о материи, как это было показано в предыдущем разделе; в том же смысле бесконечность может быть потенциально задана и через приращение множества.
Ответ на возражение 1. Все потенциальное приводится к актуальности согласно модусу [своего] бытия; например, день настает постепенно, а не вдруг. Так и к бесконечности множество движется [в результате] последовательных операций, а не [приходит] внезапно; так происходит потому, что каждое множество может сменяться другим множеством до бесконечности.
Ответ на возражение 2. Множество видов (идей) фигур бесконечно в смысле их [потенциально] бесконечно большого числа. Так, например, существуют идеи трехсторонних, четырехсторонних и так далее фигур; но как бесконечно счислимое множество в одно мгновение не приводится к действительности, также обстоит дело и с множеством фигур.
Ответ на возражение 3. Хотя предположение [о существовании] иных вещей не препятствует предположению [о существовании] других, однако предположение [о существовании] бесконечного числа противоположно по отношению к любому из видов множеств. Поэтому невозможно, чтобы существовало актуально бесконечное множество.