2. Менделевские законы наследственности и человек

Изменчивость управляется многочисленными законами; некоторые из них уже смутно выясняются и будут вкратце обсуждены в дальнейшем.

Чарлз Дарвин

Изменение собственной генетической конституции человеку неподвластно. Но хотя многие из нас вряд ли согласились бы пересмотреть свои матримониальные планы из-за генетических соображений, не бесполезно узнать, что можно, о генетике человека. Генетические закономерности по большей части устанавливали опытным путем на искусственно опыляемых растениях и быстро размножающихся животных, в частности на знаменитой плодовой мушке — дрозофиле. Впервые точное описание того, как гены определяют различия между индивидуумами одного вида, дал Грегор Мендель.

Свои опыты он ставил на душистом горошке. Любопытно, что статья с подробным описанием его наблюдений и выводов прошла совершенно незамеченной, хотя журнал, в котором она была опубликована в 1866 г., был доступен ученым[2].

В 1900 г. трое ботаников — немец Карл Корренс, австриец Эрих Чермак и голландец Гуго де Фрис — независимо друг от друга опубликовали работы, подтверждавшие выводы Менделя. С тех пор механизм наследственности изучало множество исследователей, но в знак признания приоритета Менделя законы передачи наследственности получили названиеменделевских.

Менделевские законы наследственности

Законы передачи наследственных факторов, установленные Менделем на растении, применимы и к человеку. Предположим, что рыжеволосая женщина вышла замуж за брюнета и все их дети будут брюнетами (при условии что мужчина не является носителем гена рыжих волос, другими словами, он, выражаясь языком селекционера, «чистокровен» по черным волосам). Следовательно, ген, определяющий черный цвет волос,доминантен по отношению к гену, определяющему рыжий цвет волос; о последнем принято говорить как о гене, который находится в рецессивном состоянии. Теперь предположим, что один из детей этой пары вступает в брак с потомком аналогичной пары и у них родится, скажем, двенадцать детей. И хотя оба родителя — мать и отец — брюнеты, в среднем один из четырех детей у них будет рыжим, и, значит, в семье наиболее вероятное число детей с рыжими волосами — трое (из двенадцати).

Рис. 6. Наследование рыжеволосости у человека.

Ярко-рыжие волосы обусловлены рецессивным геном; его проявление заметно лишь в присутствии одинакового с ним гена. «G» означает «ген». Пунктиром обозначен признак рыжеволосости и ген, ответственный за него.

В случае, подобном приведенному, говорят, что признаки как бы «перескакивают» через поколение. Спрашивается: как же это происходит? Выше (в гл. 1) мы уже отмечали, что индивидуум получает от каждого родителя по одному хромосомному набору; хромосомы являются носителями наследственных факторов — генов. Появление у родителей-брюнетов ребенка с рыжими волосами обусловлено наличием гена, который мы обозначим буквой r , и рыжими рождаются только те индивидуумы (любого пола), которые получили r от обоих родителей. Поэтому они имеют генетическую конституцию rr . В рассмотренных нами случаях именно такая конституция была у женщины первой пары, в то время как ее муж не имел ни одного гена r . Его генетическую конституцию, определившую черный цвет волос, мы назовем RR (здесь заглавные буквы говорят о доминантности признака).

Каждый ребенок первой пары получил r от матери и R от отца. Следовательно, их генетическая конституция была Rr и они родились брюнетами, поскольку R всегда вызывает появление черных волос даже в присутствии r . Дети от брака двух людей с конституцией Rr могут иметь конституцию RR , Rr или rr , и в среднем отношение брюнетов к рыжим будет 3 : 1. Разумеется, это отношение устанавливается только при большом числе обследованных семей; в отдельных семьях, даже если они и очень велики, его вывести трудно. Такого рода соотношения вначале были получены на растениях, затем на насекомых, и только позднее их удалось подтвердить на человеке. Ведь для того, чтобы судить об эффективности законов Менделя, необходимо вырастить два поколения растений или животных и изучить соотношения встречающихся признаков на большом числе индивидуумов. Наследование далеко не всех признаков можно объяснить так просто.

Современная генетика — и в этом одно из ее достижений — установила, что при наследовании не происходит простого слияния родительских признаков. Раньше предполагали, что каждый индивидуум представляет собой смесь родительских признаков (грубо говоря, по аналогии с красками; ведь известно, например, что оранжевая краска получается от смешения желтой с красной). На примере с цветом волос мы убедились, что рыжие волосы появляются во втором поколении в «неразбавленном виде». Их появление следует отнести за счет генов, которые передаются непосредственно из поколения в поколение.

Эта независимость генов сказывается в появлении новых комбинаций признаков в результате брака между людьми, обладающими разным набором генов. Поясним это на примере. Женщина, родившаяся от брака африканки из племени грикуа и шотландца, вышла замуж за «белого» мужчину смешанного происхождения. У них было четверо сыновей, и выглядели они следующим образом: один очень высокий, почти белый, но с карими глазами и вьющимися волосами; второй — среднего роста, с более темной кожей, карими глазами, но с прямыми черными волосами; третий — также среднего роста, несколько темнее второго, с карими глазами и волосами кафрского типа, и, наконец, четвертый — среднего роста, промежуточного цвета кожи, с карими глазами и темно-каштановыми волосами готентотского типа. Итак, в этой семье (показанной на рис. 7) самые различные черты лица, и встречаются они в необычных сочетаниях с другими признаками: например, у первого сына светлая кожа, но волосы негроидного типа.

Рис. 7. Сыновья женщины смешанного происхождения (отец — шотландец, мать из племени грикуа) и европейца.

Если эти признаки определяются генами различных хромосом, то понятно, что они будут расщепляться именно таким образом. Каждая хромосома, наследуемая от отца, получена им в свою очередь от одного из его родителей; то же следует сказать и о хромосомах, наследуемых от матери. А так как дети одних и тех же родителей получают различные комбинации хромосом, то у них могут проявиться признаки их дедушек и бабушек в самых различных сочетаниях, и это доказывает отсутствие слияния признаков.

Но каждая хромосома несет много генов, поэтому вполне возможны случаи, когда признаки не расщепляются, а остаются сцепленными , то есть локализованными в одной хромосоме, и наследуются совместно. Сцепление признаков, характерное для многих животных и растений, не часто встречается у человека. Но для нас сейчас это и не так важно, ибо сцепление очень редко бывает полным. Его нарушение возникает при обмене наследственным материалом между парами хромосом в процессе образования яйцеклетки и сперматозоида: обмен материалом неизбежно разрушает сцепление между генами.

На основании всего сказанного можно сделать следующий вывод: проявление той или иной наследственности определяется генами, которые встречаются у различных индивидуумов в любых сочетаниях. Именно этой рекомбинацией генов мы и обязаны огромным разнообразием человеческих типов. Даже самые малочисленные группы людей, живущих в практически одинаковой окружающей среде, отличаются большим разнообразием во внешнем виде и других признаках. Частично это объясняется пусть очень незначительными, но все же различиями в факторах среды, а в основном — «перетасовкой» генов в каждом поколении.

Генетическая детерминация пола

Пол — это признак, о котором с наибольшей очевидностью можно сказать, что он наследуется. Несомненно, на развитии признаков пола сказываются и факторы среды: наличие в матке близнеца противоположного пола вызывает у некоторых млекопитающих появление как мужских, так и женских половых органов, иными словами, развивается интерсекс. Это лишний раз свидетельствует о взаимосвязи наследственности с окружающей средой, но для рассматриваемого нами вопроса существенного значения не имеет.

При нормальном развитии механизм детерминации пола довольно прост. Повторяем, что у человека 23 пары хромосом, из них только одна пара определяет пол. У женщин члены этой пары одинаковы (в этом мы можем убедиться с помощью микроскопа); они носят название Х-хромосом. У мужчин только одна Х-хромосома, а рядом с ней, размером поменьше, — Y-хромосома (рис. 2). Теперь представим себе, что происходит при образовании половых клеток, которые отличаются от всех остальных клеток организма половинным набором хромосом. Каждая яйцеклетка получает одну Х-хромосому, а сперматозоид — либо Х-, либо Y-хромосому. Следовательно, существует два типа сперматозоидов. Если яйцеклетка оплодотворяется сперматозоидом с Х-хромосомой, то оплодотворенное яйцо (с полным набором хромосом) будет иметь две Х-хромосомы, и родится девочка; если же яйцеклетку оплодотворяет сперматозоид с Y-хромосомой, то в оплодотворенном яйце будет одна Х- и одна Y-хромосома, и родится мальчик (рис. 8).

Рис. 8. Генетическая детерминация пола.

Для удобства показаны только три пары хромосом. Пол будущего ребенка устанавливается в момент оплодотворения и зависит от типа сперматозоида. Яйцеклетка, оплодотворенная сперматозоидом с Х-хромосомой, дает начало девочке, а с Y-хромосомой, — мальчику.

Невольно возникает вопрос: можно ли контролировать пол человека или других животных, позволяя только Х- или Y-содержащему сперматозоиду достигать яйцеклетки? К сожалению, пока мы не можем ответить на этот вопрос утвердительно: все попытки в этом направлении закончились неудачей[3]. Тем неменее в нормальных условиях сперматозоид с Y-хромосомой, вероятно, имеет больше шансов оплодотворить яйцеклетку, чем сперматозоид с Х-хромосомой. Известно, что мальчиков рождается несколько больше, чем девочек. Так, в Великобритании на каждые 100 девочек рождается 106 мальчиков. Это и имеют в виду, когда говорят, что соотношение полов среди новорожденных равно 106. Мы не знаем, каково соотношение полов сразу после оплодотворения; ранее предполагали, что мужских зародышей гибнет больше, чем женских, но недавние работы показали, что дело не в этом. Одно несомненно: мужских зародышей зарождается больше, чем женских. Казалось бы, это противоречит тому, чего следовало ожидать, зная механизм определения пола: ведь при равном количестве Х- и Y-сперматозоидов и одинаковой возможности успешного оплодотворения для обоих видов соотношение полов при зачатии должно равняться 100. В действительности, как мы отмечали, сперматозоиды, содержащие Y-хромосомы, имеют некоторое преимущество: они легче и потому, возможно, подвижнее.

Разумеется, очень важно научиться использовать различную активность обоих видов сперматозоидов. И дело не только в контролировании пола у человека; это важно для сельского хозяйства. Чрезвычайно ценно, чтобы в стадах рождались преимущественно телочки, на птицефермах — куры. Сейчас успешно разрабатываются методы искусственного осеменения. Не исключено, что в ближайшее время появится такой способ обработки используемой для искусственного осеменения спермы, при котором сохранит активность только один тип сперматозоидов.

Любопытно, что детская смертность среди мальчиков больше, чем среди девочек, поэтому первоначальная разница в соотношении полов к моменту полового созревания исчезает и становится равной 100, то есть молодых людей обоего пола оказывается приблизительно поровну. Но в экономически развитых странах, для которых характерно снижение смертности среди женщин, соотношение полов к 85 годам равняется примерно 55; это значит, что на каждого мужчину приходится почти две женщины. Мы до сих пор не сумели окончательно выяснить, чем объясняется подобная «живучесть» женщин; вероятно, немалую роль в этом играет трудность мужских профессий, но вряд ли это единственная причина.

Как одно из следствий механизма детерминации пола, у мужчин возможно проявление действий определенных генов, локализованных в Х-хромосоме, из-за отсутствия соответствующего гена в Y-хромосоме (у женщины другая Х-хромосома обычно имеет дубликат, или аллель, рассматриваемого гена). Наиболее известным примером может служить ген, передающий гемофилию — заболевание, при котором нарушена свертываемость крови: кровь свертывается очень слабо или совсем не свертывается. Люди, пораженные гемофилией, как правило, умирают в раннем возрасте — ведь даже небольшой порез или внутреннее кровоизлияние может привести к смертельной потере крови. Гемофилия встречается только у мужчин и обусловливается рецессивным геном, получаемым сыном от матери вместе с Х-хромосомой. Сама мать гемофилией не болеет, так как на ее второй Х-хромосоме локализован доминантный ген, определяющий нормальное свертывание крови. Поэтому гемофилия почти всегда передается здоровой и ничего не подозревающей женщиной — носительницей гена, который может вызвать гибель ее сыновей. Правда, в среднем будет поражена только половина потомства, другая половина получит нормальную Х-хромосому. Теоретически эта болезнь может поразить и женщину, обладающую двумя генами гемофилии. Но медицине известен только один такой случай, так как обычно наличие двух генов гемофилии убивает зародыш.

Рис. 9. Родословная семьи, иллюстрирующая распространение гемофилии.

Носительницей гемофилии была английская королева Виктория: один из ее сыновей и по крайней мере трое внуков и шесть правнуков страдали от гемофилии (среди них члены царствующих фамилий Испании и царской России; что касается представителей нынешней британской королевской семьи, то они избежали неприятного гена).

Признаки, обусловленные генами, локализованными в X-хромосоме, называют сцепленными с полом . Несколько таких признаков известно у человека. К ним, помимо гемофилии, относится цветослепота, при которой путают красный цвет с зеленым. Это рецессивное состояние гораздо чаще встречается у мужчин, ибо женщина, чтобы заболеть, должна обладать двумя генами соответствующего типа, что встречается очень редко.

Рис. 10. Наследование цветослепоты.

Пунктиром обозначен пораженный цветослепотой и хромосома, несущая ген, ответственный за это свойство.

Хромосомные аномалии и мутации

Факты, которые мы приводили выше, известны ученым уже довольно давно. Сопоставлением и изучением этих фактов и занимается генетика — наука о явлениях наследственности и изменчивости. Основное положение менделевской генетики — учение о неизменности генов: деление ядер не нарушает полного набора хромосом (за исключением зрелых яйцеклеток и сперматозоидов, имеющих половинный набор), так как содержащиеся в них хромосомы также делятся (рис. 3). Кроме того, в большинстве случаев не только хромосомы, но и многие гены тоже в точности воспроизводятся. Такого рода постоянство сохраняется из поколения в поколение, и гены остаются неизменными в течение всего своего жизненного цикла в половых клетках и в процессе оплодотворения.

Следует отметить, что эта гипотеза противоречит довольно распространенному до сих пор мнению о возможности «наследования благоприобретенных признаков», но, как мы имели возможность убедиться, говоря о ламаркизме, мнение это ошибочно. Для полной ясности повторим, чем мы руководствуемся, отказываясь от теории Ламарка. Предположим, что в процессе приспособления к окружающим условиям у индивидуума вырабатываются определенные навыки в выполнении какой-либо работы или, скажем, устойчивость к заболеванию. Вызовет ли это такое изменение в генах, которое приведет к сходной приспособленности у его потомков, но уже генетическим путем ? В отношении сложных многоклеточных организмов убедительных доказательств существования такого эффекта нет.

Однако и говорить о полной стабильности хромосом или генов нельзя. Ядра клеток тела, сперматозоидов или яйцеклеток иногда имеют необычное число хромосом, что легко определяется под микроскопом. Более того, отдельные гены могут изменяться, или мутировать , и если мутация происходит в сперматозоиде или яйцеклетке, которые в дальнейшем дадут начало новому организму, то каждая клетка его тела будет содержать мутантный ген, и присутствие такого гена непременно скажется на внешнем виде, развитии или биохимии взрослого организма. Правда, когда этот мутантный ген рецессивен, его наличие выявляется только в тех случаях, если он присутствует в двойной дозе, то есть в гомозиготном состоянии; его существование становится очевидным только по прошествии многих поколений.

Новейшие методы изучения хромосом человека, разработанные в 50-х годах текущего столетия, позволили расширить наши познания о хромосомных аномалиях. Прежде всего выяснилось, что клетки человеческого тела имеют 46 хромосом (диплоидное число), а не 48, как предполагали ранее. Затем в медицинских журналах появились сообщения о пациентах с недостающей (моносомия) или лишней (трисомия) хромосомой. Разумеется, причин появления такого рода аномалий много. При этом может быть затронута любая пара хромосом; известны случаи, когда у индивидуума не одна пара хромосом находится в состоянии трисомии.

К наиболее ярким примерам аномалий относятся изменения в половых хромосомах. Медики уже давно знают о таком редком заболевании, как синдром Клейнфельтера: у больного недоразвитые семенники, слабый волосяной покров на лице и лобке, такое же, как у женщины, распределение жира и часто увеличенные грудные железы. Обычно, а возможно всегда, эти больные стерильны, и синдром, как правило, выявляется, когда они проходят обследование в специальных клиниках. В настоящее время установлено, что синдром Клейнфельтера — результат трисомии половых хромосом: две Х-хромосомы и одна Y-хромосома — тип XXY вместо XX (нормальная женщина) или ХY (нормальный мужчина). Другое редкое заболевание — синдром Шерешевского — Тернера: у больной недоразвиты яичники, карликовый рост, умственная отсталость и другие нарушения. У таких больных моносомия половых хромосом; только одна Х-хромосома — тип Х0.

Аномалии, естественно, встречаются и в аутосомах, то есть во всех остальных, неполовых хромосомах. Наибольшую известность приобрела аномалия, связанная с одной из мельчайших пар хромосом, так называемый синдром Дауна. Эта болезнь легко распознается уже в детстве: помимо резко выраженной умственной отсталости, для больных характерны маленькая голова, специфический разрез глаз, плоское лицо с выступающими скулами, толстый язык. Долгое время ученым не удавалось найти удовлетворительного объяснения этого заболевания, хотя было ясно, что причина его генетического порядка. Теперь мы знаем, что синдром Дауна вызывается трисомией: все клетки организма больного имеют 47 хромосом вместо 46.

Аномалии подобного рода сравнительно редки, но наблюдения за ними представляют несомненный интерес: возможно, они помогут раскрыть механизм действия хромосом и генов. Но гораздо более важным изменением является точечная, или единичная генная, мутация, при которой резкое изменение претерпевает всего одна субмикроскопическая единица наследственности. В результате мутантный ген воспроизводит себя уже в этой измененной форме и, таким образом, генная мутация, происходящая в ядре яйцеклетки или сперматозоида, передается из поколения в поколение.

Насколько нам известно, генные мутации имеют место у всех организмов — начиная от ультрамикроскопических вирусов и бактерий и кончая самыми крупными и сложными животными и растениями. Это значит, что гены не обладают полной наследственной стабильностью или, во всяком случае, не всегда точно копируют себя в момент воспроизведения. Однако при частых мутациях многие мутанты имели бы минимальные шансы выжить. Большинство мутантных генов неблагоприятны для организма, ибо снижают его жизнеспособность. Это связано с тем, что, являясь продуктом естественного отбора, мы имеем такой набор генов, который близок к наилучшему для наших условий существования. Более того, сочетание всех генов индивидуума должно образовывать сбалансированную комбинацию, которая нарушается при большоймутабильности генов.

И действительно, случаи генных мутаций очень редки. Это видно на примере спонтанных мутаций у человека, немалую роль в возникновении которых, вероятно, играют солнечная радиация и другие естественные факторы внешней среды. Эти мутации вызывают иногда тяжелые заболевания, хотя и не нарушают у пораженных людей способности к размножению. У больного ахондроплазией, одним из видов карликовости, голова и туловище нормального размера, в то время как руки и ноги очень короткие; у пораженного другой болезнью, ретинобластомой, в сетчатке одного или обоих глаз развивается злокачественная опухоль, которая, если ее вовремя не удалить, может стать причиной смерти; при эпилойе в различных частях тела развиваются доброкачественные опухоли, вызывающие эпилепсию и слабоумие; впрочем, эпилойя может протекать и в легкой форме. Для каждого из этих заболеваний есть примеры доминантного наследования болезни. Чтобы установить частоту мутаций, необходимо выявить частоту заболеваний у детей здоровых родителей. Из-за доминантности этих заболеваний каждый такой случай можно отнести за счет мутации. Частота мутаций достигает 1–5 на 100 000 в каждом поколении. Правда, нельзя утверждать, что все гены мутируют с такой частотой, но надо полагать, ни один из них не мутирует с существенно большей частотой, чем указанная.

Действие радиации

В связи с участившимися случаями мутаций как у человека, так и у других организмов интерес к этой проблеме усилился. Следует подчеркнуть, что увеличение мутаций объясняется прежде всего радиацией, вызванной испытаниями атомных и водородных бомб. Но мутации вызываются и другими источниками излучения, в частности рентгеновским оборудованием, используемым в диагностике и при лечении различных заболеваний.

Прежде всего необходимо знать, как действует на организм радиация. С одной стороны, она может непосредственно поражать самого человека, вызывая ожоги, разрушение костного мозга с последующей тяжелой формой анемии, рак кожи и кровотворных тканей (лейкемию) и смерть от лучевой болезни. Эти заболевания зарегистрированы у большого числа людей, находившихся в зоне действия поражающей радиации от взрыва атомных бомб в Хиросиме и Нагасаки. Случаи заболеваний лейкемией значительно возросли в связи с участившимися испытаниями водородных бомб.

Но от непосредственного воздействия радиации, если только она не рассеяна по поверхности земли, можно защититься. Работающих на атомных электростанциях и с рентгеновским оборудованием можно защитить даже от самых малых доз облучения.

Совершенно иную картину дает второй тип поражающего воздействия радиации. На частоте мутаций в половых клетках, еще способных дать начало будущим поколениям, скажется любое количество дополнительной радиации, попадающей на яичники или семенники. Нет такой дозы, о которой можно было бы сказать: это допустимый максимум. Как же сказывается на человеке (или любом другом организме) увеличение частоты мутаций? Прежде всего участились случаи рождения детей с серьезными дефектами и нарушениями — это наиболее очевидное следствие повреждения наследственного материала. Ясно, что уже само по себе это нежелательно. Вряд ли мутации увеличат число людей с выдающимися способностями — мы ведь отмечали, что большинство мутантных генов неблагоприятны. Но имеются и другие соображения. Скорость мутирования в обычных условиях (то есть «естественные» частоты мутаций) можно рассматривать как результат естественного отбора. Естественные частоты мутаций как бы создают равновесие между чрезмерной устойчивостью (консервативностью) наследственности, с одной стороны, и ее неустойчивостью, или изменчивостью, которая вызывает большое количество дефектов и даже приводит к стерильности, — с другой. Мы пока не вправе вмешиваться в механизм поддержания этого равновесия, так как до сих пор плохо его знаем (равно как и генетику человека в целом).

Практическое применение менделевской генетики

Несомненно, наибольшее применение менделевская генетика находит в животноводстве и растениеводстве. Правда, ее можно приложить и к человеку, но здесь возможности ее ограниченны. Предположим, мужчина или женщина перед вступлением в брак хотели бы знать, могут ли у их детей появиться какие-либо нежелательные признаки. Как мы уже отмечали, генетическая конституция предрасполагает к развитию туберкулеза и некоторых форм рака. Но роль генетических факторов в обоих случаях слишком мала, и вряд ли стоит принимать их во внимание при решении вопроса о браке. Если даже, например, от туберкулеза или рака умер близкий родственник жениха или невесты, это не должно послужить причиной для беспокойства, тем более отказа от брака. Ниже мы рассмотрим вопрос о наследовании такого типа факторов более подробно.

И все-таки некоторые заболевания самым непосредственным образом генетически детерминированы. С одним примером наследования подобных заболеваний мы уже знакомы — это гемофилия, другие будут разбираться в гл. 7. Наши познания в области генетики человеческих дефектов уже настолько обширны, что иногда позволяют дать весьма полезную информацию супругам, желающим иметь детей. Однако размеры и тематика книги не позволяют нам подробно остановиться на этом вопросе.

Рассмотрим только особый случай — браки между двоюродными братьями и сестрами. Этот вопрос интересует как людей, вступающих в брак, так и общество в целом: не появятся ли в результате брака между близкими родственниками дефективные дети? Ответить на это невозможно, так как опасность в каждом конкретном случае исходит от рецессивно наследуемых признаков, а мы, как правило (за исключением признаков, сцепленных с полом), не можем установить присутствие рецессивного гена в гетерозиготном состоянии, не вызывающем развития дефекта. Если гены, обусловливающие определенный дефект, у брата и сестры одинаковы, то весьма возможно, что один из четырех (то есть 25 %) их детей родится с дефектом.

Необходимо подчеркнуть, что в огромном большинстве браков между двоюродными братьями и сестрами вообще не бывает дефективных детей. Но мы ведь знаем, что есть гены, которые вызывают развитие дефектов, и вероятность обладания одинаковыми рецессивными генами у близких родственников, кузенов, бóльшая, чем у совершенно не связанных узами родства пар. Поэтому и вероятность появления дефективных детей у них больше.

Однако это обстоятельство не удерживает и не должно удерживать двоюродных братьев и сестер от вступления в брак, за исключением тех случаев, когда их родственники имеют какой-либо дефект, определяемый рецессивным геном. Это может быть тяжелое заболевание кожи, так называемая пигментная ксеродерма, или один из видов амавротической семейной идиотии (ювенильная форма), или разновидность глухонемоты; все эти заболевания чрезвычайно редки.

Что же касается общества, то можно решительно утверждать, что для общества браки между двоюродными братьями и сестрами нежелательны. Если их запретить, то число упомянутых заболеваний снизится. Однако в целом генетический эффект от запрещения подобных браков будет незначительным, и вряд ли стоит ради него жертвовать счастьем людей[4].

Рис 11. Наследование рецессивного признака.

В трех случаях браки между двоюродными братьями и сестрами привели к появлению больных детей, хотя сами родители были здоровы.

Браки между двоюродными братьями и сестрами (иначе называемые кузенными браками) — одна из форм инбридинга[5]. Наиболее интенсивная его форма — это браки между родителями и детьми или между сибсами (то есть родными братьями и сестрами). Такой инбридинг очень распространен в растениеводстве и животноводстве, но в большинстве человеческих сообществ запрещен. Правда, он был характерен для древнеегипетских фараонов, живших во втором тысячелетии до н. э., и, как утверждают, некоторые фараоны, рожденные от браков между сибсами, были чрезвычайно одаренными людьми. Возможно, это объясняется тем, что фараоны восемнадцатой династии совершенно освободились от вредных рецессивных заболеваний. И все же при «кровосмесительных» браках опасность появления дефективных детей, как правило, неизмеримо выше, чем при кузенных браках. Более того, считают (и не без оснований), что близкий инбридинг снижает рождаемость у человека.

Некоторые ограничения теории Менделя

На основании сказанного у читателя может сложиться впечатление, будто вся наследственность подчинена сравнительно простым законам Менделя. Но это далеко не так. Достаточно вспомнить примеры с гемофилией и цветослепотой, когда мы отмечали одну сравнительно небольшую модификацию менделевских законов — наследование признаков, сцепленных с полом.

Множество других случаев, к которым неприложимы законы Менделя, только подтверждают известное положение: гены действуют не обособленно друг от друга, а как части единой сложной системы. Так, например, рост и вес с их «непрерывной изменчивостью» подвержены влиянию не одного или двух генов, а очень многих. В большинстве популяций рост взрослых людей колеблется от 150 до 185 сантиметров (рис. 12). Большая часть этих отклонений отражает влияние средовых различий. Что же касается генетической детерминации роста, то число генов, ответственных за него, возможно, исчисляется сотнями, причем каждый оказывает лишь небольшое влияние. Как полагают, общее число генов в одном половинном наборе хромосом человека равно примерно 20 000[6], — не удивительно, что есть широкие возможности для самых сложных взаимодействий.

Рис. 12. Изменчивость признака, доступного измерению.

Рис. 13. Гистограмма распределения роста в зависимости от генетических и средовых факторов (применительно к мужскому населению Великобритании).

Это очень важно при рассмотрении таких признаков, как «интеллектуальность». Несмотря на существование корреляции по интеллекту между родителями и детьми (даже когда дети отделены от родителей), «интеллектуальность», как бы она ни измерялась или определялась, наследуется более сложным способом, чем, например, рыжий цвет волос.

О тестах «на интеллектуальность» и связанных с ними проблемах мы будем подробнее говорить в последующих главах. Сейчас упомянем лишь, что те же принципы можно применить к многим патологическим состояниям. Иногда спрашивают: наследуются ли психические заболевания? Ответить на этот вопрос всегда трудно, поскольку определения и диагностика психических заболеваний варьируют. Но на основании многочисленных исследований, связанных с диагностикой такого рода заболеваний в семьях, где известны случаи психозов, можно сделать следующие выводы: если у человека развился психоз, то вероятность, что он проявится у его брата или сестры, составляет 1 : 20, а для популяции в целом — 1 : 100. (Эти весьма приближенные цифры относятся к белому населению США.) Таким образом, на развитии психоза, несомненно, сказывается наследственный фактор. По мнению многих психиатров, шизофрения, например, возникает в тех случаях, когда развитие человека с определенной генетической конституцией протекает в особо неблагоприятных условиях. Немаловажную роль при этом играет окружение: вполне возможно, что кое-кто из близких своим поведением способствует развитию болезни. Но, несомненно, причины заболевания гораздо сложнее, и в основе их лежат взаимоотношения наследственности и внешней среды.

Эти проблемы сейчас широко изучаются на близнецах (так называемый близнецовый метод). Этот же метод применяется и в исследованиях по восприимчивости к инфекционным заболеваниям. Так, например, если один из однояйцовых близнецов заболел туберкулезом, то вероятность заболевания другого очень высока; у двуяйцовых (генетически не идентичных) близнецов конкордантность [7] гораздо ниже, и это прямое свидетельство генетической изменчивости в восприимчивости к туберкулезу. Какой практический вывод отсюда следует? Прежде всего — избегать контактов с туберкулезными больными; более того, молодежь, и особенно подростки, если у них в роду кто-то болен туберкулезом, должны находиться под особым наблюдением. Следует подчеркнуть, однако, что основную роль в заболевании туберкулезом играет среда, и тот факт, что у некоторых людей имеется генетически повышенная восприимчивость к этой болезни, не снимает первостепенного значения факторов среды.

Итак, подведем некоторые итоги. Наиболее важные признаки человека, являясь результатом действия многих генов (равно как и факторов окружающей среды), выпадают из любой простой менделевской схемы. Их проявление в популяциях определяет частоты распределений, и какие-либо прогнозы в отношении определенных индивидуумов бессмысленны. Не имеет практического значения и тот факт, что смертельный исход в результате какой-либо болезни для людей, не достигших шестидесятилетнего возраста, 1 : 17. И так ли уж важно знать, что один из ста детей будет умственно недоразвитым? Но для планирования службы здравоохранения в странах с большим населением статистические данные такого рода имеют огромное значение.