Глава восьмая

в которой читатель знакомится еще с одним великим открытием, после чего помимо своей воли оказывается втянутым в борьбу крайних и непримиримых точек зрения

 

Мы помним с вами, уважаемый читатель, что задача космологии заключается в изучении строения вселенной в целом. Существовавшие в XIX веке представления базировались на классической теории Ньютона. Естественно, что, создав новую теорию пространства и тяготения, Эйнштейн должен был приняться за конструирование и новой модели мира…

Тысяча девятьсот семнадцатый, февраль

Семнадцатый год! Год великих потрясений в жизни народов, в политике и в науке. В феврале в Берлине вышел десятый том журнала «Сообщения Прусской академии наук» с короткой статьей, подписанной именем Эйнштейна. Статья называлась «Вопросы космологии и общая теория относительности» и умещалась всего на десяти страницах. Но этого было достаточно для рождения современной науки о вселенной. Науки, не только имеющей свою теорию, но и претендующей на экспериментальное подтверждение своих выводов.

Вселенная Ньютона, атакованная парадоксами Ольберса и Зеелигера, стала к началу нашего столетия для физиков и астрономов расплывчатым и неконкретным понятием. Ее бесконечность в ньютоновском смысле приводила к фотометрическому и гравитационному парадоксам, противореча наблюдениям. Оба парадокса свидетельствовали о катастрофическом неблагополучии в классической физике. Ведь только подумать, ей противоречило само существование вселенной! Нельзя было оставаться и на позициях Гершеля, считая, что в пустом бесконечном пространстве имеется лишь одна звездная система с конечным и вполне определенным числом звезд. В этом случае небесные тела должны были притягиваться друг к другу и слипаться в один ком.

Ньютоновская вселенная, описываемая законами эвклидова пространства, наблюдаемой действительности не отвечала. Мир был другим. Не таким, каким представлял его себе XIX век. Заботливо собираемая «по кирпичику», постройка мироздания рухнула, как карточный домик, под напором вскрывшихся противоречий. Следовало срочно предпринять какие-то кардинальные меры, чтобы вернуть людям гармонию мироздания. Нужно было найти такую модель мира, которая, не противореча уже открытым и проверенным законам физики, не только противостояла бы парадоксам Ольберса и Зеелигера, но и могла предсказать новые результаты, которые поддавались опытной проверке на базе возросших технических возможностей астрономии и физики.

Читатель, надо полагать, помнит, что выход из тупика, созданного гравитационным и фотометрическим парадоксами и вторым началом термодинамики, искали многие. Автор уже упоминал об изящных математических решениях К. Шарлье, иерархические структуры которого были свободны от парадоксов.

Астрофизик Эмден строил так называемые изотермические сферы, находящиеся в термодинамическом равновесии и противостоящие «тепловой смерти» В 1897 году задача исследования однородной стационарной модели была решена Л. Бьянки, который нашел девять различных типов однородных пространств. Все они являлись пространствами постоянной кривизны и, как пишут С. Шюкинг и О. Гекмаи «обладали тем свойством, что любой наблюдатель в любом направлении видит одну и ту же картину мира».

Тем не менее никто из исследователей не сумел построить модель вселенной, не имеющей центра и одновременно свободной от гравитационного и фотометрического парадоксов, а также от термодинамических затруднений.

Теперь автор убежден, что читателю вполне ясна обстановка, в которой появилась работа Эйнштейна. Прежде всего следовало решить, от каких канонов старой теории можно отказаться. Исчерпавшая себя ньютоновская модель вселенной опиралась на «трех китов»: 1) на стационарность, или неизменность, вселенной во времени, 2) на «космологический принцип», или «мировой постулат» однородности и изотропности, предусматривающие отсутствие единого центра мира и невозможность существования привилегированных направлений в нем, 3) на эвклидовость пространства. От чего же отказываться?..

Выход указывала общая теория относительности. Она обобщила ньютонову теорию всемирного тяготения, приведя ее в соответствие с принципом относительности. Правда, при этом геометрия мира оказывалась неэвклидовой. И Эйнштейн пожертвовал этим «китом».

Он предложил вместо бесконечной, стационарной и однородной модели вселенной Ньютона с плоским эвклидовым пространством конечную модель с римановым замкнутым в себя трехмерным пространством (трехмерной сферой), но также однородную и стационарную! Правда, чтобы построить свою модель, Эйнштейну пришлось несколько видоизменить уравнения тяготения, выведенные в общей теории относительности. «Я пришел к убеждению, — писал он, — что уравнения гравитационного поля, которых я до сих придерживался, нуждаются еще в некоторой модификации». Дело в том, что единственное стационарное решение уравнений в первозданном виде прилило к плоскому пространству Минковского, что принципиально ничем не отличалось от вселенной Ньютона и представляло собой тривиальный результат.

И вот тогда Эйнштейн вводит в свои уравнения космологический член, связанный с некой постоянной λ (лямбда), вводит, с трудом решившись на это действие, «не оправданное нашими действительными знаниями о тяготении». Но иного выхода не было!

В ньютоновском приближении наличие космологической постоянной в уравнениях тяготения соответствовало введению дополнительных сил во вселенную. Причем сил, пропорциональных расстоянию. Лямбда очень мала, и потому на небольших расстояниях влияние космологического члена незначительно. Модифицированные уравнения Эйнштейна с лямбда-членом почти ничем не отличаются от исходных. Но совсем другое дело, когда рассматриваемые расстояния приобретают космологические масштабы, то есть становятся равными десяткам или сотням миллионов парсеков…

Потому и называют постоянную λ космологической постоянной. Силы притяжения, действующие между космической начинкой замкнутой вселенной, пытаются стянуть вещество в единый ком. В уравнении космологический член с λ больше нуля играл бы ту же роль что и силы отталкивания, поддерживающие вселенную в равновесии. То же произошло бы и в противном случае. Если представить себе, что вещество вселенной не сжимается, а, наоборот, разлетается в разные стороны, лямбда-член, с λ меньше нуля станет играть роль дополнительного притяжения, удерживающего вселенную в неизменном состоянии.

«Вновь введенная универсальная константа λ определяется, если известны средняя плотность распределения (вещества во вселенной) — ρ, сохраняющаяся в состоянии равновесия, а также радиус сферического пространства R и его объем — 2π2R3», — писал Эйнштейн.

Пусть читателя не смущает странная форма записи. Следует помнить, что мы имеем дело с трехмерной сферой четырехмерного пространства-времени. Так привычная нам величина поверхности двухмерной сферы в привычном нам трехмерном мире — 4πR2 — в четырехмерном мире превращается в гиперповерхность и вычисляется по формуле 2π2R3.

Так возникла статическая, неизменная во времени замкнутая и однородная модель вселенной, подчиняющаяся аксиомам неэвклидовой геометрии с искусственно введенной силой отталкивания — силой отрицательного давления.

Чтобы представить себе вселенную Эйнштейна более наглядно, обратимся к испытанному способу — мысленному эксперименту. Предположим, что нам удалось, стартовав с Земли, выдерживать направление полета строго по «прямой», к примеру, по направлению светового луча. Тогда если считать, что пространство вселенной обладает общей положительной кривизной, мы должны непременно вернуться в исходную точку пространства. Это значит, что, начавши наше движение с космодрома Земли и стремясь удалиться как можно дальше от исходной точки, мы все равно через миллиарды лет вернемся туда же.

Модель такой вселенной получится более наглядной, если сплющить трехмерное пространство в двухмерное пространство-поверхность, а координату времени оставить неизменной прямой, уходящей в бесконечность. Получится длиннющая труба — цилиндр, По этой аналогии первая модель мира, предложенная Эйнштейном на основании общей теории относительности, и получила название «цилиндрической» вселенной.

Автор надеется, что проницательный читатель и сам пришел к выводу, что если бы все ухищрения, включая и введение ничем не оправданной лямбды, приводили к единственному возможному решению, дающему модель «цилиндрической» вселенной, то это означало бы полное поражение ОТО, «скромные похороны по третьему разряду». Понимал это и сам Эйнштейн. Однако необычные идеи теории привлекали…

В том же 1917 году голландский астроном Виллем Ситтер (1872-1934) разработал на основании ОTO модель, в которой время искривлялось так же, как и пространство. Теперь, вылетев из одной точки пространства и выдерживая прямой линию полета, путешественник должен был возвратиться не только в ту же точку пространства, но и в то же самое время. Однако, рассчитывая свою модель, де Ситтер допустил, что вещества в ней нет! Его модель была пустая, вакуумная, как говорят сегодня.

Строго говоря, это допущение противоречило одному из основных принципов общей теории относительности, согласно которому именно наличие вещества и его движение определяют геометрические свойства мира. При полном отсутствии вещества (включая и гравитационные поля) пространство-время должно быть плоским.

  Тысяча девятьсот семнадцатый, февраль

Почему же модель де Ситтера все-таки обладала кривизной? Причиной как раз и была лямбда — космологический член в уравнениях Эйнштейна, играющий роль источника тяготения, искривляющего пространство-время.

Отсутствие вещества было, конечно, слабым местом модели де Ситтера. Но было у нее и одно существенное достоинство. Согласно теории де Ситтера, чем дальше взгляд земного наблюдателя проникал в пространство, тем медленнее должны были ему казаться происходящие там процессы. Стоило же предпринять путешествие «в эти отдаленные области лени и неторопливости» на космическом корабле, как по мере нашего приближения мы увидели бы постепенное оживление хода времени. И к моменту нашего прибытия жизнь кипела бы там в обычном темпе. Это явление можно было истолковать, как предсказание будущего красного смещения. К сожалению, в те годы на это никто не обратил внимания.

Сейчас моделью де Ситтера довольно часто пользуются теоретики для приближенных исследований, Эйнштейн чрезвычайно высоко ценил работу голландского астронома. «Мы ему обязаны глубокими исследованиями в общей теории относительности», — говорил он впоследствии.

Виллем де Ситтер родился в последней четверти XIX столетия — «века покоя и удовлетворенности в науке». И хотя большая часть его творческой жизни пришлась на наше беспокойное время, де Ситтер до конца оставался типичным ученым прошлого столетия.

Да, он принял специальную теорию относительности и даже пытался в 1911 году на ее основе объяснить некоторые неувязки в движениях Луны и планет.

Да, он проникся идеями общей теории относительности и первым дал ее космологическое приложение, а в конце жизни много занимался вопросами расширяющейся вселенной.

Но все это говорит лишь об отсутствии у него консерватизма. Он был «последним могиканином» среди астрономов-наблюдателей. Он предпочитал сам глядеть в окуляр телескопа, когда другие уже передоверили эту работу фотокамере; он занимался астрометрией и увлеченно мерял положения звезд по своим наблюдениям. Де Ситтер — астроном в самом полном понимании этого слова. В заключение следует еще добавить, что, родившись в Голландии, окончив там же университет, он всю жизнь проработал почти на одном месте, в Лейдене, не стремясь ни к почестям, ни к какой-то выгоде. Однако работы этого скромного и лишенного ложного честолюбия человека сильно укрепили позиции новой теории, содействуя славе ее творца.

Слава Эйнштейна особенно возросла после экспедиции Эддингтона и подтверждения общей теории относительности во время солнечного затмения 1919 года. В книге «Эйнштейн» профессор Б. Г. Кузнецов приводит слова польского физика Леопольда Инфельда, долгое время работавшего с Эйнштейном, о причинах «беспрецедентного роста популярности» автора теории относительности.

«Это произошло после окончания первой мировой войны. Людям опротивели ненависть, убийства и международные интриги. Окопы, бомбы, убийства оставили горький привкус. Книг о войне не покупали и не читали. Каждый ждал эры мира и хотел забыть о войне. А это явление способно было захватить человеческую фантазию. С земли, покрытой могилами, взоры устремлялись к небу, усеянному звездами. Абстрактная мысль уводила человека вдаль от горестей повседневной жизни. Мистерия затмения Солнца и сила человеческого разума, романтическая декорация: несколько минут темноты, а затем картина изгибающихся лучей — все так отличалось от угнетающей действительности… Тяга людей к миру была, как мне кажется, главной причиной возрастающей славы Эйнштейна».

Но слава никогда не приходит в одиночку. Одновременно с признанием теории прогрессивной частью ученых началась травля ее творца и попытки подорвать к ней доверие. Враги революций, враги прогресса понимали взрывную силу новой теории, понимали и то, что время разобщения науки и политической жизни миновало. Отныне наука стала реальной силой общественной борьбы. В Германии возникли специальные организации с целью борьбы против влияния теории Эйнштейна. Даже кое-кто из видных физиков и философов, не в силах справиться с новым взглядом на мир, пытался опровергнуть выводы теории любыми способами. Парадоксы теории относительности оказались в самой гуще политической борьбы.

«В течение прошедших лет весь мир находился в состоянии беспокойства умственного и физического,- злобно писал один из профессоров Колумбийского университета. — По всей вероятности, война, большевистская революция были видимым результатом глубокого умственного расстройства. Это беспокойство проявилось в стремлении отбросить испытанные методы государственного руководства в угоду радикальным и непроверенным экспериментам. Это же чувство беспокойства вторглось в науку. Многие хотели бы заставить нас отбросить испытанные теории и взамен построить основу современного научного и механического развития во имя спекулятивной методологии и фантастических представлений о вселенной».

Однако ни злобные выпады, ни прямая клевета не могли уже остановить цепной реакции признания теории относительности. Наоборот, все это еще больше приковывало к ней внимание масс, еще выше поднимало популярность выводов, обновляющих старые чуть ли не врожденные понятия о Мире.

«Я только решаю уравнения»

В 1922 году в берлинском журнале «Zeitschrift fur Physik» появилась статья, присланная из новой, послереволюционной России. Называлась она «О кривизне пространства» и была подписана А. Фридманом. Статья была совсем маленькой, а имя автора на Западе совсем неизвестным. И тем не менее этот петроградский математик, кажется, пытался поправлять самого Эйнштейна!..

Здесь автор позволит себе маленькое отступление, чтобы обратить внимание благосклонного читателя на то, что модели вселенной, предложенные Эйнштейном и де Ситтером на основании решения гравитационных уравнений, были как бы полярны. Они отвечали двум крайним точкам зрения. Вселенная Эйнштейна была «набита» веществом, но отличалась статичностью, и в ней не было места красному смещению. Вселенная же де Ситтера предсказывала существование красного смещения, но она была пустой…! Очевидно, истина должна была лежать где-то посередине. Впрочем, в 1922 году о красном смещении еще никто и не помышлял, а представление о вселенной как о неподвижном мире, пребывающем в вечном покое, казалось вполне логичным.

По решениям А. Фридмана геометрия вселенной непрерывно менялась во времени. Расстояния между всеми ее частями должны были расти, а кривизна пространства-времени и плотность вещества — уменьшаться… Вывод совершенно невероятный!

В августе журнал со статьей А. Фридмана попал в руки Эйнштейна. Эйнштейн прочел статью. Эйнштейн пожал плечами. Он не поверил в правильность решений, найденных Фридманом, и набросал несколько строк в «Физический журнал», в которых категорически заявил, что работа А. Фридмана скорее неверна и результаты петроградского математика сомнительны. Редакция срочно напечатала отзыв. Прошло довольно много времени, понадобившегося для того, чтобы сначала толстый немецкий журнал доехал до России, а затем оттуда — в Берлин, в командировку, отправился физик Ю. А. Крутков с обстоятельным письмом А. Фридмана к А. Эйнштейну. В результате в том же почтенном берлинском журнале появилась новая статья Эйнштейна: «Заметка о работе А. Фридмана «О кривизне пространства».

  Я только решаю уравнения

«В предыдущей заметке я критиковал названную работу. Однако мое возражение основывалось на вычислительной ошибке, в чем я по совету господина Круткова убедился из письма господина Фридмана. Я считаю результаты господина Фридмана правильными и исчерпывающими. Оказывается, уравнения поля допускают для структуры пространства наряду со статическими решениями и динамические (то есть изменяющиеся во времени) центрально-симметричные решения.

А. Эйнштейн, Берлин (поступило 13 мая 1923 года)».

Прекрасный и поучительный пример научной объективности и доброжелательности.

Короткий «конфликт Фридмана с Эйнштейном» привлек всеобщее внимание. Это был настоящий научный спор. Победил в нем Фридман. Однако, если разобраться строго, никакого спора не было. Физик Эйнштейн, исходя из чисто физических соображений, искал стационарное решение своих уравнений, потому что был убежден в неизменности вселенной.

Математика Фридмана физические условия волновали не в первую очередь. «По этому поводу, — говорил академик Петр Леонидович Капица во вступительной речи на сессии отделения физико-математических наук Академии наук СССР, посвященной памяти А. А. Фридмана, — иногда говорят, что Фридман не очень-то верил в свою собственную теорию и относился к ней лишь как к математическому курьезу. Он будто бы говорил, что его дело — решать уравнения, а разбираться в физическом смысле решений должны другие специалисты-физики.

Это ироническое высказывание о своих трудах остроумного человека не может изменить нашу высокую оценку его открытий. Даже если Фридман не был уверен в том, что расширение вселенной, вытекающее из его математических выкладок, существует в природе, это никаким образом не умаляет его научной заслуги».

Кто же такой Александр Фридман, вступивший в спор с «самим Эйнштейном»?

Александр Александрович Фридман родился 17 июня 1888 года в Петербурге в артистической, семье. Отец его был музыкант и композитор, мать — дочерью чешского композитора Воячека.

Мальчиком Фридман воспитывался у родственников отца. Одно время, в тревожные годы первой русской революции, он даже жил с родственниками в царской резиденции — Зимнем дворце. Сохранились воспоминания о том, как, восхищенный поднимающейся грозной волной, восемнадцатилетний Саша Фридман писал в Зимнем листовки. Друг-приятель его Володя Смирнов (впоследствии видный советский математик, академик, лауреат Государственной премии Владимир Иванович Смирнов) приходил, забирал прокламации и распространял их по городу.

В 1905 году вместе с Тамаркиным (тоже будущим профессором математики) Фридман в последнем классе гимназии пишет свою первую научную работу, посвященную числам Бернулли. Публикация появилась год спустя в солидном научном журнале, который издавали такие известные математики, как Клейн и Гильберт. В том же 1906 году Александр Фридман окончил гимназию с золотой медалью и поступил в Санкт-Петербургский университет на математическое отделение физико-математического факультета.

На последних курсах Фридмана увлекла динамическая метеорология — сложная математическая теория движения атмосферы. Математический аппарат динамики сплошных сред как раз соответствовал интересам молодого человека. Надо сказать, что в области дифференциальных уравнений в частных производных, которыми описывались процессы в атмосфере, русская математическая школа тех лет занимала ведущее место в мировой науке.

Дифференциальными уравнениями называются математические соотношения, которые связывают, например, скорость изменения какой-либо величины со значением самой величины. В уравнения могут входить и ускорения, определяющие «скорость» изменения скорости. Установив зависимость между заданной величиной, скоростью ее изменения и ускорением, математик решает уравнение и получает формулу, по которой значение искомой величины можно найти в любой момент времени. Если вы представите себе эти вычисления, то легко поймете, что дифференциальные уравнения способны описывать конкретные явления природы в самом широком и общем виде.

Обычно математики не обращают внимания на то, какие прикладные вопросы выясняются «чистым» решением дифференциальных уравнений. Однако А. Фридман придерживался иного взгляда. Профессор А. Ф. Гаврилов писал в своих воспоминаниях.

«А. А. Фридман имел редкие способности к математике, однако изучение одного только математического мира чисел, пространства и функциональных соотношений в них его не удовлетворяло. Ему было мало и того мира, который изучался теоретической и математической физикой. Его идеалом было наблюдать реальный мир и создавать математический аппарат, который позволил бы формулировать с должной общностью и глубиной законы физики и затем, уже без наблюдения, предсказывать новые законы».

Фридман удивительно умел охватить реальные явления в целом. Понимая, что любое познание есть лишь приближение к истине, он выработал свой стиль работы, ставший сейчас основным в теоретических исследованиях.

На первом этапе он считал задачей теоретика разумное упрощение — идеализацию рассматриваемой задачи. Все второстепенное должно быть отброшено. Этот этап завершался составлением систем уравнений или неравенств, трактующих задачу в чистом виде на языке математики. Затем начинался второй этап — решение! Здесь уже никакой физики — чисто математическая работа. И лишь когда окончания тельные формулы выведены, оценить их достоинство и степень упрощения может только эксперимент. Только опыт подтверждает право теории на существование.

С портрета смотрят на нас внимательные, иронические и грустные глаза из-под стекол очков. Интеллигент до мозга костей, он с первыми выстрелами 1914 года добровольно пошел воевать. Фридман попал в авиационный отряд, зачисленный туда «нижним чином». Всякая война для солдата означает конец науке гражданской. Но Фридман не просто солдат. «В настоящее время я занимаюсь вопросом об определении температуры и давления, когда заданы скорости… — пишет он с фронта. — Затем собираюсь написать, если вы найдете это удобным, для Географического сборника небольшую заметку о причинах возникновения и исчезновения вихрей в атмосфере, хотя бы в общей математической форме, — было бы очень интересно».

А вот другое письмо: «В отряде, скуки ради, я немного учусь летать». И немного ниже: «За разведки я представлен к Георгиевскому оружию, но, конечно, получу ли — большой вопрос. Конечно, это как будто мелочность с моей стороны — интересоваться такими делами, как награда, но что поделаешь, так видно уж устроен человек, всегда ему хочется немного «поиграть в жизнь».

Широта интересов Александра Александровича была поразительна. Он работал в области теоретической метеорологии и электродинамики. В период войны 1914 года получил звание летчика и занялся теорией бомбометания. Написал две основополагающие работы по космологии. И в июле 1925 года совершил вместе с пилотом П. В. Федосеенко рекордный полет на аэростате.

Воспитанник Петербургского университета, он одним из немногих ученых пришел на службу революционному пролетариату Петрограда и до самого конца, до самой смерти — нелепой и случайной, от брюшного тифа в 1925 году — оставался верным своему народу.

Три модели Александра Фридмана

Знаменитые уравнения тяготения Эйнштейна представляют собой систему из десяти дифференциальных уравнений в частных производных. Грубо говоря, они показывают, как распределение масс в пространстве влияет на кривизну этого пространства. Иными словами, они показывают, как метрика пространства зависит от распределения и движения масс и как, в свою очередь, та же метрика определяет движение вещества.

Из-за чисто математических трудностей система уравнений Эйнштейна не поддавалась общему решению. Приходилось идти на различные упрощения.

Те, кто учился и работал рядом с Фридманом, часто вспоминают его любимое присловье: «А нельзя ли здесь чего-нибудь откинуть?» Не с этих ли позиций подошел он к решению уравнений Эйнштейна? Впрочем, он не откидывал лямбда-члена системы Эйнштейна, он просто решал уравнения. Оказалось что при этом возможно множество решений. Особенно интересен случай при λ=0. Решение это настолько интересно, что стоит остановиться на нем поподробнее.

В своей первой работе А. Фридман сохранил все предположения Эйнштейна, за исключением стационарности, и исследовал получившиеся нестационарные однородные изотропные модели с замкнутым пространством постоянной положительной кривизны. При этом ему удалось в отличие от Эйнштейна получить нетривиальные решения уравнений и без космологического члена. Что же представляли собой теоретические модели, полученные петроградским математиком?

Прежде всего они были нестационарны. Радиус кривизны и плотность вещества во вселенной менялись со временем. И от того, какой величины выбрать среднюю плотность, зависела судьба модели мира.

Представим себе ρ=ρкр: средняя плотность равна некоторому определенному критическому значению. Его можно вычислить по несложной формуле, воспользовавшись значениями некоторых «мировых постоянных». Но сейчас нам это не нужно. Достаточно, что такое значение существует. При критической плотности вещества пространственная часть четырехмерного мира — плоская. Однако это не неподвижная модель мира Минковского, о которой мы уже говорили. Фридмановское решение делало вселенную подвижной! Все расстояния в пространстве растут, то есть частицы разлетаются в разные стороны со скоростью, которая для малых расстояний пропорциональна приблизительно самому расстоянию.

Если для наглядности отказаться от одного измерения и перейти к двухмерному пространству, меняющемуся во времени, то такую модель можно представить себе в виде равномерно растягиваемой в разные стороны резиновой пленки. Пылинки, налипшие на ее поверхности, будут играть роль звездных систем — галактик.

Посмотрите на наш рисунок. На нем изображен график изменения расстояний в такой модели. Сухая абстрактная кривая на самом деле хранит в себе целый приключенческий роман, только в зашифрованном виде.

Начнем расшифровку с крайней левой точки нашего графика. Она убедительно говорит, что некогда все расстояния между любыми двумя точками во вселенной были пренебрежимо малыми. Не существовало ни пространства, ни времени, ни звезд, ни планет, ни туманностей… Ничего!.. Это область нулевого времени. Потом сработал некий механизм, и стало появляться вещество, частицы его стали разлетаться, начался отсчет времени, стало расширяться пространство — расстояния между любыми двумя частицами вещества стали расти со скоростью, пропорциональной самому расстоянию. Это значит, что далекие частицы разлетаются с большей скоростью, близкие — с меньшей.

  Три модели Александра Фридмана

Для растягивающейся пленки такое утверждение сомнений не вызывает. Отметьте одну из пылинок на ее поверхности и представьте, что это вы — наблюдатель. Когда поверхность пленки увеличивается, то ближайшая к вам пылинка будет удаляться от вас с какой-то вполне определенной скоростью.

Более далекая покажется вам куда более шустрой. Скорость ее будет больше, чем ближайшей, и так далее.

В дальнейшем это решение использовали Эйнштейн и де Ситтер. И потому иногда эту простейшую модель называют именем этих ученых.

Но в статье Фридмана было и более «трагическое» решение. Он предположил, что средняя плотность вещества во вселенной больше критической. Прежде всего это потребовало отказа от эвклидова пространства и перехода к сферическому, риманову трехмерному пространству, да ещё с переменным радиусом кривизны.

При этом начало, то есть пресловутый «нуль-пункт», ничем не отличалось, от начала предыдущей модели.

Но дальше все шло не так. Радиус неэвклидова сферического пространства, как вы можете видеть из следующего рисунка, не увеличивался бесконечно. В точке М он достигал максимума, а потом снова уменьшался до нуля. Это означало, что в истории расширяющейся вселенной должен наступить момент, когда «разбегание» прекратится, после чего все пойдет в обратном направлении. Начнется сжатие. И через некоторое время планеты, звезды и галактики снова сольются в единый комок праматерии. Эта модель получила название закрытой.

В 1924 году из-под пера А. Фридмана вышла новая работа, посвященная теории Эйнштейна. Называлась она «О возможности мира с постоянной отрицательной кривизной». В новой работе он исследовал уравнения Эйнштейна, предположив, что плотность вещества во вселенной меньше критической. Получилась новая модель с неэвклидовой геометрией — неограниченно расширяющееся пространство отрицательной кривизны. Гиперболическое пространство Лобачевского, вызывавшее столько насмешек при жизни Великого Геометра, получило право на существование наравне с эвклидовым и римановым. Радиус пространства Лобачевского рос немного быстрее, чем в первой модели. Чтобы показать это, мы постарались выпрямить кривую третьего графика, который вы видите на предыдущей странице.

Таковы три фридмановские модели вселенной. Все они начинаются с нулевого радиуса. Все расширяются. Две из них утверждают ненулевую кривизну пространства…

Но как поверить в эти теоретические рассуждения? Как убедиться в том, что вселенная, которую человечество испокон веков видит одной и той же, на самом деле находится в состоянии непрерывного движения, расширения, разлетания… Как понять, что пусть в далеком прошлом, но существовал такой момент, когда весь мир был сжат в точку? Момент начала всего, даже нашего времени?.. Как, наконец, убедиться в том, что пространство, окружающее нас, обладает кривизной? И какую из трех моделей Фридмана принять в качестве наиболее близкой к объективной реальности?

  Три модели

Эти вопросы буквально не давали спать по ночам теоретикам. Не только физики, не только астрономы и математики оказались втянутыми в дискуссию. Спор особенно обострился, когда в него вступили философы, а за ними и теологи, не желающие упустить возможности сказать и свое слово о науке с позиций религии… Вот уж поистине «куда конь с копытом, туда и рак с клешней»… И если у читателя не иссякло терпение, то автор рад ему сообщить, что последующие главы как раз и будут посвящены разрешению указанных недоумений и вопросов.

Вот оно, «еще одно великое открытие»

История открытия, о котором пойдет речь в этой главе, началась в 1912 году, когда американский астроном Весто Мелвин Слайфер предпринял на ловелловской обсерватории исследование спектров туманностей. В то время люди еще не знали точно, что собой представляют эти странные туманные пятнышки на небе — то ли действительно облака тумана, то ли скопления невообразимо далеких звезд. Не было уверенности и в том, насколько далеки от нас эти плохо различимые объекты и принадлежат ли они к нашей Галактике или находятся за ее пределами.

Впрочем, приступая к работе, Слайфер все-таки, имел определенное мнение. Касалось оно спектров туманностей. Американский астроном был убежден, что примерно половина спектров всех объектов наблюдения должна быть сдвинута в красную сторону, а половина в фиолетовую.

Причина таких сдвигов объяснялась эффектом Доплера. Суть этого явления заключается в том, что при достаточно больших скоростях движения источников света — в данном случае туманностей — воспринимаемая наблюдателем частота электромагнитных колебаний будет либо увеличиваться при сближении источника света с наблюдателем, либо уменьшаться при удалении от наблюдателя.

Получается, что если туманное пятнышко летит в сторону Земли, длина световых волн должна укорачиваться. Спектральные линии покажутся нам сдвинутыми в фиолетовую область. Если же. туманность летит от Земли, то все происходит наоборот и линии ее спектра должны казаться сдвинутыми в красную область более длинных волн. Это смещение измерялось в относительных величинах и определялось изменением длины испущенной волны к длине волны, принятой наблюдателем Z = Δλnn.

Физик Георгий Гамов, чтобы заставить студентов запомнить правило доплеровского эффекта, рассказывал на лекциях такой анекдот. Касался он коллеги Гамова, тоже известного американского физика по имени Роберт Вуд. Однажды в Балтиморе полиция задержала Вуда за то, что он въехал под красный свет. Знаменитый физик блестяще объяснил на суде, что из-за эффекта Доплера, в результате большой скорости его автомобиля, красный свет сдвинулся в фиолетовую сторону спектра до зеленого. И что он как водитель в нарушении не виноват. Судья уже решил было оправдать Вуда. Но, как на грех, в зале оказался студент, только что проваленный Вудом на экзамене. Студент быстро подсчитал скорость, требуемую для превращения красного света в зеленый. И судья, отказавшись от первоначального обвинения, оштрафовал Вуда за превышение скорости.

  Вот оно, «еще одно великое открытие»

Приступая к наблюдениям, Слайфер рассуждал так: поскольку никакого преимущественного направления в космосе быть не может, примерно половина туманностей должна от нас удаляться, а половина приближаться. Можно представить себе недовольство исследователя, когда самые тщательные наблюдения показали, что из семнадцати наблюдаемых туманностей лишь две, судя по фиолетовому смещению, приближаются к Земле. Все остальные туманности имели красное смещение. А следовательно, направляли свой полет от нас.

Определение лучевых скоростей по спектральному сдвигу, надо полагать, считалось кропотливой и, по-видимому, довольно малоперспективной работой, потому что почти десять лет Слайфер был едва ли не единственным астрономом, занимающимся этим делом.

К началу двадцатых годов он измерил уже спектральный сдвиг и рассчитал скорости 41 туманного пятна. Почти все они удалялись. Лучевые скорости, рассчитанные по величине красного смещения, распределялись в пределах от 300 до 1800 км/сек — это значительно больше, чем самая высокая из известных в то время лучевых скоростей звезд.

Допустить, что один класс объектов Галактики принципиально только удаляется от нас, означало бы наделить и этот класс, и нашу солнечную систему какой-то исключительностью.

Непонятное поведение слайферовских туманностей заинтересовало еще двух астрономов. Это были Милтон Ла-Салль Хьюмассон, начинавший свою астрономическую карьеру сторожем обсерватории, и штатный астроном-наблюдатель Эдвин Пауэлл Хаббл. Впрочем, Хаббл был едва ли не больше, чем Хьюмассон, «астроном божьей милостью». Окончив Чикагский университет с дипломом адвоката, он в двадцать пять лет поступает в Иеркскую обсерваторию и становится астрономом-наблюдателем. Читатель, обладающий хорошей памятью, наверняка заметит про себя, что подобный случай в астрономии не уникален для прошлых лет. Но сменить так круто специальность в XX столетии — для этого нужно иметь не только мужество, но и истинное призвание к астрономии.

К этому времени в обсерватории на горе Вилсона вошел в строй самый большой телескоп в мире, обладающий зеркалом диаметром в два с половиной метра. И Хаббл вместе с Хьюмассоном начали ювелирную работу, фотографируя слабые туманности с выдержкой в несколько часов, а то и суток. Молодые астрономы виртуозно владели техникой, и наступил день, когда впервые в истории астрономии им удалось увидеть на фотографии туманности Андромеды — звезды. Значит, все-таки туманности имеют звездный состав! А неразличимы они по той причине, что находятся от нас слишком далеко, за пределами нашей собственной звездной системы, нашей Галактики. Потому й предложили называть эти удаленные небесные объекты сначала внегалактическими туманностями. Однако доказательство звездного состава этих туманностей было таким значительным шагом вперед, что английский астроном Харлоу Шепли предложил переименовать внегалактические туманности в «галактики». Тем самым одновременно подчеркивалось колоссальное расширение пределов вселенной, которая оказалась состоящей из множества звездных островов, аналогичных нашему.

Почти всю жизнь посвятил Хаббл исследованию внегалактических туманностей, или галактик, расширив границы нашей вселенной до миллиарда световых лет. Последние десятилетия своей жизни астроном потратил на то, чтобы классифицировать и составить своеобразный каталог галактик. И к 1953 году — последнему году жизни Хаббла — его классификация была в основном готова. В нее вошло около тысячи наиболее ярких галактик северного и частично южного неба.

В 1928 году, фотографируя спектр наиболее слабого и удаленного туманного объекта, Хьюмассое сделал особенно длительную выдержку. Когда пластинка была проявлена, Хаббл вместе с Хьюмассоном углубился в ее изучение. Астрономы не поверили своим глазам. Галактика, обозначенная в каталоге Дрейера как NGC 7619, имела такой красный сдвиг спектра, что расчет ее скорости дал величину 3800 км/сек! Это была совершенно фантастическая в те времена скорость для небесного объекта. С этого момента Хаббл с еще большим вниманием стал исследовать поведение спектров внегалактических объектов.

Постепенно, по мере накопления результатов наблюдений, подтвердилась упомянутая выше странная особенность: почти все галактики, за небольшим исключением, показывали красное смещение. Это значило, что они удаляются от нашей звездной системы. При этом наиболее слабые галактики — самые удаленные от нас — имели это смещение спектра наибольшим. Напрашивался вывод, что далекие звездные острова разлетаются с большими скоростями, чем находящиеся ближе…

К 1929 году Хаббл сообщил, что ему удалось установить фундаментальную закономерность: красное смещение в спектрах галактик Δλ/λ пропорционально расстоянию до галактик.

Это было великим открытием, поражающим воображение. Оно блестяще подтверждало фридмановскую гипотезу расширяющейся вселенной. Если верить тому, что красное смещение спектров далеких галактик действительно следствие эффекта Доплера, то есть вызывается скоростью удаления звездных островов, то галактики должны удаляться со скоростями, пропорциональными их расстояниям:

ν = H·r,

где Н — некоторый коэффициент пропорциональности с размерностью(1/сек.). Для удобства расчетов, чтобы избавиться в ответе от громадных чисел, измеряется Н в других единицах:

H = км/сек. Mгпс

где Mгпс — мегапарсек — расстояние, равное 3,084 • 1019 км. Буква H выбрана для обозначения коэффициента пропорциональности тоже неспроста, а в честь Хаббла (Hubble), именем которого назван этот фундаментальный закон вселенной и сама постоянная.

  Вот оно, «еще одно великое открытие» _2

Теперь оставалось определить значение коэффициента H потому, что он определяет время Т, прошедшее от таинственного «нуль-пункта» до наших дней. Для большинства фридмановских моделей время Т (по порядку величины) обратно пропорционально Н(T = 1/H). Однако надежное определение этой мировой константы (H) оказалось весьма непростым делом. Лишь к 1936 году Хаббл пришел к выводу, что H = 540 км/сек на мегапарсек. Отсюда получался срок жизни вселенной:

1 Mгпс/(540 км/сек) = 3,084 · 1019 км / (540 км/сек) = 5,72 · 1016 сек = 1,8 · 109 лет.

То есть всего примерно два миллиарда лет?.. Два миллиарда лет прошло с момента образования нашей вселенной, если применить этот коэффициент для расчета времени фридмановских моделей? Но согласно геологическим данным возраст нашей Земли больше двух с половиной миллиардов лет! Не могла же наша планета образоваться раньше, чем вся вселенная?..

Противники фридмановских моделей пытались использовать этот абсурдный вывод, чтобы подорвать доверие к новой теории. Сторонники общей теории относительности утверждали, что причина расхождения в неточности измерения расстояний до галактик. В общем, «этот странный факт возбудил много спекуляций», — писал Макс Борн.

Само по себе открытие красного смещения позволило части ученых, считавших себя приверженцами теории Эйнштейна — Фридмана, торжествовать победу. Некоторые даже считали, что теперь эта теория полностью и вполне надежно обоснована экспериментально. Другая часть, наоборот, стала возражать не только против модели расширяющейся вселенной, но и против всех выводов общей теории относительности. Короче, в среде физиков-теоретиков, астрономов и философов начался бурный идейный разброд. Было высказано недоверие к интерпретации красного смещения как результата эффекта Доплера. Стали лихорадочно искать другие объяснения наблюдаемому явлению.

Одна из гипотез, имевших довольно большую популярность в то время, утверждала, что частицы света — фотоны, путешествуя по вселенной, теряют часть своей энергии. Энергия же фотона пропорциональна его частоте и, следовательно, обратно пропорциональна длине волны. Значит с уменьшением энергии фотона длина волны излучаемого света должна увеличиваться. И весь спектр удаленного объекта оказывается таким образом смещенным в красную сторону. При этом нет никакого разбегания. Величина смещения спектра должна быть пропорциональна расстоянию, пройденному светом, и все!..

Лет двадцать назад эта гипотеза вполне серьезно обсуждалась на теоретических симпозиумах. Но потом оказалось, что она требовала отказа от одного из основных законов природы — закона сохранения энергии. Ибо ежели энергия фотонами терялась, никуда не передаваясь, принцип сохранения энергии явно нарушался. Ежели же фотоны передавали часть своей энергии некой среде или другим фотонам, путь их должен был искривляться. Следовательно, изображения далеких галактик не могли принципиально быть четкими. Они обязаны были приходить к нам размытыми. И чем больше было до них расстояние, тем больше они должны были «размываться». Очертания же даже самых далеких и слабых галактик получались на негативах астрономических фотосъемок такими же четкими, как и ближайших к нам звездных систем…

Вторая гипотеза гласила: предположим, что фотон неожиданно распадается на фотон меньшей энергии и некие частицы. Почему? Неизвестно! Просто распадается, и все, если ему приходится долго путешествовать. Эту гипотезу подверг резкой критике молодой талантливый советский физик-теоретик М. П. Бронштейн (1906-1938). Он работал с Л. Д. Ландау, первым в нашей стране стал заниматься квантовой теорией тяготения и фактически заложил ее основы. Он был бы, безусловно, выдающимся ученым — гордостью советской науки, если бы не трагическая гибель в 1938 году.

Критикуя гипотезу распада фотона, М. П. Бронштейн доказал, что, приняв подобное свойство световых квантов, мы получили бы различное красное смещение от разных участков спектров одного объекта. Кроме того, линии спектра неизбежно должны тогда расширяться, и радиоволны от далеких источников к нам не доходили бы вообще, они бы распадались.

В конце концов всем специалистам, всем скептикам мира пришлось согласиться с тем, что иного толкования красного смещения, кроме космологического, основанного на эффекте Доплера, быть не может. И в настоящее время нет ни одной приемлемой гипотезы, которая объясняла бы три основных свойства красного смещения иначе, чем доплеровским эффектом. А свойства эти такие:

1. Независимость красного смещения от длины волны спектра.

2. Закон Хаббла — ν = H · r,

3. Изотропность красного смещения, то есть его независимость от направления.

Правда, оставалось возражение, которое основывалось на несовпадении возраста вселенной по расчетам Хаббла с возрастом Земли по данным геологов. Почти двадцать лет астрономы мирились с этим. Двадцать лет Земля была старше вселенной. Лишь в конце пятидесятых годов усилиями нового поколения астрономов был осуществлен пересмотр шкалы внегалактических расстояний, приведший к тому, что постоянная Хаббла — мировая константа Н — оказалась в шесть-семь раз меньше той, которую определил сам Хаббл.

Обычно сегодня считают, что H = 75 / 100 (км/сек) · Mгпс.

Понятно, что переход на новую шкалу увеличил и расстояния до галактик, увеличил и время жизни вселенной, сведя его к приемлемой величине. Действительно, теперь

T = 1/H = 1 Mгпс/(100/75) км/сек = 3,086 · 1019 км/ (100/75) км/сек = (10/13)· 109 лет.

Пришло время для того, чтобы попытаться определить горизонты окружающего нас мира.

Горизонты вселенной

Люди давно заметили, что небесные тела «любят» объединяться в системы. Первая из таких систем — наша собственная Земля — Луна.

У Сатурна, опоясанного уникальным кольцом, десять спутников, У Юпитера — двенадцать. Наше Солнце, по существующим воззрениям, обыкновенная звезда, каких пруд пруди, имеет тоже систему из девяти открытых на сегодняшний день планет с тридцатью двумя спутниками. Ну, а звезды? В какие системы объединяются они?

Звезды составляют различные системы: двойные, тройные, кратные. Более крупными коллективами являются рассеянные звездные скопления: от десятков и сотен до тысячи и двух тысяч звезд. Еще более крупными объединениями являются шаровые звездные скопления, насчитывающие иногда более миллиона звезд. Академик В. А. Амбарцумян открыл еще один тип звездного содружества — ассоциации молодых, горячих звезд. Все эти содружества входят в состав гигантской звездной системы, носящей название Галактики и содержащей около ста миллиардов членов.

Первым вполне научно и убедительно описал Галактику Вильям Гершель. Он наглядно объяснил, что все наблюдаемые звезды образуют огромную звездную систему, по форме напоминающую линзу. Систему назвали Галактикой. Однако это предположение долгое время не выходило за рамки гипотезы.

В двадцатые годы нашего столетия Хаббл доказал, что спиральные и некоторые другие туманные, пятнышки, с трудом различимые на фотографиях, сделанных с помощью мощных инструментов, на самом деле являются удаленными от нас звездными системами, вполне сравнимыми по размерам с нашей Галактикой. Началась новая эпоха в астрономии. радиус исследуемого человеком мира увеличился в десятки тысяч раз. Это количественное расширение горизонтов не могло не повлечь за собой и качественного изменения взглядов на вновь открываемые объекты. Во вселенной нет ничего единственного и неповторимого, но природа не ставит и на конвейер свои объекты: галактики, радиогалактики, квазары, квазаги, пульсары — кто скажет, что ждет наших астрономов, когда в строй вступит новый советский сверхтелескоп с шестиметровым зеркалом?..

Наша Галактика окружена шестнадцатью соседями — тоже галактиками, образующими довольно тесную группу — Местную систему. Астрономы полагают: есть основания считать, что все до сих пор открытые семнадцать членов Местной системы связаны не только какими-то физическими законами, общими для всей группы, но и общим происхождением. Наблюдая миллионы галактик, разбросанных почти во всех уголках неба, астрономы заметили, что галактики также имеют тенденцию к группированию, объединяясь в скопления галактик. А нельзя ли в таком случае по аналогии со звездами предположить, что скопления галактик также объединяются в некую сверхсистему?

В 1953 году французский астроном Вокулер высказал мнение, что наиболее яркие (до 12-й видимой звездной величины), то есть ближайшие к нам галактики, определенно концентрируются, объединяясь в колоссальную сплюснутую систему, которую он и назвал сверхсистемой галактик. При этом советский астроном Б. Л. Воронцов-Вельяминов обнаружил, что не все наблюдаемые галактики входят в эту сверхсистему. Значит, это не метагалактика, включающая в себя все объекты, находящиеся в пределах, доступных обозрению.

Но тогда возникает вопрос: нельзя ли следующей ступенью организации вещества во вселенной считать метагалактику?

Непосредственно наблюдаемых фактов для такого вывода пока как будто нет. И все-таки некоторые основания предполагать, что такая система, как метагалактика, существует, имеются.

Существует не очень отчетливое предположение, что в состав метагалактики входит столько же гигантских звездных островов, сколько примерно звезд содержит такая Галактика, как наша, и что метагалактика является автономной системой галактик. Размеры метагалактики не трудно подсчитать, если заранее пойти на признание закона Хаббла. Строго-то говоря, он не совсем точен для очень больших расстояний. Но давайте пренебрежем этим обстоятельством. Тогда границы обозримой вселенной отодвинутся от нас на расстояние, на котором находятся галактики, уносящиеся от нас со скоростью света С.

Итак, закон Хаббла: ν = Н • r.

Отсюда, если ν = 300 000 км/сек, то

r = ν/H = 300 000 (км/сек)/(от 100 до 75)(км/сек Mгпс) = (от 3000 до 4000)Mгпс

Нельзя сказать даже, что это «огромное» расстояние. Это просто ни с чем не сообразное расстояние в 1028 сантиметров, которое нет смысла переводить в километры. Все равно его себе не представить.

  Горизонты вселенной

Есть предположение, что метагалактика не является, последней ступенью организации вещества во вселенной. Но ежели метагалактика не вся вселенная, то позволительно задать вопрос: что же дальше?

А дальше, говорят некоторые ученые, по-видимому, «следует предположить существование других метагалактик с еще большими расстояниями и, может быть, еще более грандиозными схемами организации».

«Вот это здорово! — имеет право воскликнуть читатель. — А не кажется ли автору, что изгоняемый с самых первых страниц «демон бесконечности» снова контрабандой проник в картину мира?»

Ну, что может ответить на это автор. Он сокрушенно разведет руками и невнятно пробормочет что-то, ссылаясь на спиральный путь развития познания и на новый, все более возрастающий уровень наших знаний о бесконечности по сравнению не только с греками и арабами, но и с концепцией Ньютона и Лобачевского, Римана, Эйнштейна и Фридмана.

Отец Жорж решает уравнения

«Я только решаю уравнения. Разбираться в их физическом смысле должны физики». Эти слова с небольшой степенью достоверности приписываются Александру Александровичу Фридману. Дело в том, что «вселенные Фридмана» расширялись потому, что этого требовали от них решения космологических уравнений Эйнштейна. И все! Полвека назад это выглядело вовсе не так наглядно, как может показаться нам с позиций 1971 года. Люди жаждали увидеть физическую картину рождения вселенной, соответствующую абстрактной математической схеме. Люди требовали интерпретации математических решений.

В 1931 году профессор университета в Лувене, в Бельгии, аббат Жорж Эдуард Леметр (1894-1966) выступил с предложением рассматривать «нуль-пункт» вселенной именно как момент, когда все вещество, вся материя вселенной была исторгнута в разных направлениях из крошечного объема, стремящегося в «нуль-пункте» пространства и времени к нулю… Для некоторых эта гипотеза снова запахла «сотворением мира». Нечто из ничего! На такие чудеса способен только господь бог. О Жорже Леметре почти не найти подробных сведений, хотя он прочно входит в первую пятерку космологов-релятивистов. Причина, очевидно, в двойственности его жизни и судьбы.

В 1922 году двадцативосьмилетний Леметр рукоположен в сан. А в 1923-1924 годах усиленно изучает астрофизику в Кембридже и в Массачусэтскощ технологическом институте. Там же защищает он и диссертацию. В 1927 году Леметр возвращается в Бельгию, где он становится профессором астрономии католического университета в Лувене. Леметр много занимается вопросами общей теории относительности. Примерно девяносто процентов всех его работ (а он опубликовал 73 труда) посвящены обще-релятивистской космологии и проблемам ОТО.

В 1931 году Леметр первым очень наглядно описал, как некогда все вещество вселенной было сдавлено в один ком, который он назвал «отцом-атомом», и как в один прекрасный момент t = 0 «отец-атом» взорвался. Осколки его, первоначального комка материи, полетели (и продолжают разлетаться сейчас) в разные стороны, породив наблюдаемую вселенную со всеми атрибутами ее пространства-времени.

Леметровская модель была легка для понимания и очень эффектна. Его решение немного отличалось от решения Фридмана. Радиус кривизны менялся во времени как бы с «остановкой». При этом сам Леметр, понимая несостоятельность «гипотезы творца», относился к ней с большой осторожностью и был далек от примитивного представления о боге-кудеснике, создавшем мир из ничего. Вот что сказал он по поводу теории расширяющейся вселенной с «началом» на XI Сольвеевском международном конгрессе в 1958 году, посвященном вопросам космологии.

«В той мере, в какой я могу судить, такая теория полностью остается в стороне от любых метафизических или религиозных вопросов. Она оставляет для материалиста свободу отрицать любое трансцедентное бытие. В отношении начала пространства-времени материалист может оставаться при том же мнении, которого он мог придерживаться в случае неособенных областей пространства-времени».

Так что Леметр, хоть и был аббатом — отцом Доржем, вопросы веры и знания старался не смешивать. Однако вряд ли нашего читателя особенно заинтересует проблема отношений священнослужителя со своим кумиром. Да и наша задача иная. Как ученый Ж.Э. Леметр, безусловно, выдающаяся личность. Почетный доктор ряда университетов, член Бельгийской и Итальянской академий наук, он становится также членом Ватиканской — Папской академии наук и даже избирается в последние годы ее президентом.

Один из немногих ученых мира Леметр в 1953 году награжден медалью Эддингтона.

Международная премия за популяризацию научных идей Георгию Гамову

В свое время модель Леметра сыграла весьма существенную роль в развитии мировоззрения. Особенно популярной стала она после того, как физик Георгий Гамов (1904-1968) назвал теорию Леметра теорией большого взрыва и доработал ее начальный этап.

Фигура Георгия Антоновича Гамова весьма одиозна. И, наверное, автор бы не стал даже упоминать о его биографии, ограничившись изложением теории, если бы не смерть ученого, которая подвела грустный, но неизбежный итог избранной им для себя жизни.

Родился Георгий Гамов в Одессе, там же начал учиться, наблюдать звезды в подаренный отцом телескоп; в Одессе Гамов кончил и среднюю школу. Отпраздновав это событие, юноша поступил в Ленинградский университет. Годы учебы совпадают со временем бурного становления советской физики. Именно этот период дал нашей стране П. Л. Капицу и Н. Н. Семенова, И. В. Курчатова и Ю. Т. Харитона В. Н. Кондратьева и А. П. Александрова, И. К. Кикоина и многих других видных ученых наших дней Сейчас это старшее поколение советских физиков — нобелевские лауреаты, лауреаты Ленинских премий а главное, люди, чьи имена знает и произносит с уважением народ родной страны…

Со многими из них начинал, был знаком, спорил и работал вместе Георгий Гамов. В 1928 году он защитил диссертацию и был направлен в группе талантливой молодежи в летнюю школу в Геттинген — эту «Мекку науки» начала столетия. Затем он совершенствуется в Кавендишской лаборатории у Эрнста Резерфорда и Чадвика. В Копенгагене он встречается с Нильсом Бором, которому рассказывает о своих работах по квантовой теории и строению ядра. Бор приглашает его на год к себе в Институт теоретической физики, добивается для него стипендии Датской королевской академии наук. Ослепительная научная карьера, огромный талант и блестящие перспективы, В 1931 году Гамов возвращается в СССР и избирается членом-корреспондентом Академии наук СССР это в двадцать-то семь лет!

Но вот наступает 1933 год. Вместе с другими советскими учеными Георгий Антонович Гамов едет на Сольвеевский конгресс в Брюссель, где получает приглашение прочесть цикл лекций по ядерной физике в Мичиганском университете.

После недолгого пребывания во Франции в институте Пьера Кюри он переезжает в США, где начинает постоянную работу в качестве профессора физики университета Георга Вашингтона в Вашингтоне. Там в сотрудничестве с венгерским эмигрантом Э. Теллером он разрабатывает свою знаменитую теорию бета-распада. Затем публикует ряд работ по теории ядерной жидкости и ядерным реакциям в звездах. Вместе с Шенбергом развивает теорию «Урка процесса», которая привлекла внимание специалистов к роли нейтрино в звездных процессах. (Одессит Гамов не мог удержаться, чтобы не ввести жаргонное словечко для обозначения процессов «похищения» энергии. Так «урки» получили гражданство в научной литературе.) Здесь же начинает разрабатывать теорию образования элементов. Вступление Америки во вторую мировую войну не изменяет интересов Гамова. Он становится, научным консультантом ряда военных учреждений, принимает участие в манхэттенском проекте, консультируя группу Лос Аламоса, занимающуюся непосредственно созданием атомной бомбы. Позже его совместные работы с Теллером помогли американцам соорудить и взорвать свое первое водородное чудовище… Пожалуй, тогда-то впервые и поднялся в его душе гребень волны сожаления особенно высоко. Ни отъезд его, Гамова, одного из ведущих советских физиков тридцатых годов, ни война, выигранная его родным, но покинутым им народом, не остановили развитие науки. А не уехал бы он, этот процесс, может быть, шел бы еще быстрее. Впрочем, в то время, когда американцы еще только монтировали неуклюжую установку для производства водородного взрыва, в Советском Союзе уже была готова, испытана и передана в серийное производство водородная бомба.

  Международная премия за популяризацию научных идей Георгию Гамову

После войны Гамов отходит от ядерной физики. Отголоски его прошлых трудов еще слышатся в разрабатываемой им космологической гипотезе большого взрыва в 1947-1949 годах. Но в 1954 году он резко меняет направление исследований и начинает заниматься вопросами биологии. И здесь снова вспышка таланта — Гамов предлагает идею генетического кода и публикует целый ряд пионерских работ по биологии.

В 1956 году он переходит на работу в университет Колорадо, где остается уже до конца жизни.

20 августа 1968 года Георгия Антоновича Гамова не стало. Переехав в США, он оборвал все связи с родиной, полностью натурализовался. И все-таки до конца жизни оставался русским, тосковал по России и умер одиноким и скорбным — обычная судьба эмигранта. Независимо от таланта, ума или иных качеств нет для человека более горькой судьбы, чем потерять родину. Даже если внешне его жизнь будет казаться парадом благополучия.

В Америке Гамов много занимался популяризацией науки. Им написано более сотни научных работ и около тридцати научно-популярных статей. Издано около тридцати томов его книг, из них двадцать три научно-популярные. Гамов был членом многих академий мира, а в 1956 году ООН присудила Гамову Международную премию за выдающийся вклад в популяризацию научных идей. Подобный акт — большая редкость, и надо быть действительно «выдающимся популяризатором», чтобы в нашем мире удостоиться чести признания… Впрочем, с примером образца популярного мышления Г. А. Гамова читатель сам может познакомиться в следующем параграфе.

«Big bang», или «Большой взрыв», в науке о происхождении вселенной

Итак, вы помните, уважаемый читатель, что аббат Леметр дал идею «рождения» вселенной. При этом он предусмотрительно не доводил кривую изменения радиуса кривизны до начала координат. Да и сами оси предпочитал рисовать с разрывом в этой «особой» точке. Нет, о начальном периоде развития вселенной профессор Леметр предпочитал не говорить вообще…

Гамов заинтересовался именно началом. Его не устраивали названия — «первичный атом». Он предпочел назвать ком первичной, плотно спрессованной и раскаленной праматерии, на холящейся в «довзорвавшемся» состоянии, илемом, позаимствовав этот термин у Аристотеля. (Стагирский философ обозначал так основную субстанцию вселенной.)

По мнению Гамова, эволюция вселенной разбивается на пять стадий. Сначала илем состоял из очень сжатой (плотной) массы водорода, у которого все электроны оболочек вдавлены в протоны ядер, а возникшие в результате этой операции нейтроны сжались еще до предела, образовав однородную массу колоссальной плотности да еще находящуюся при весьма высокой температуре.

В 1948 году Гамов вместе с соавторами Р. Альфером, Г. Бете, фамилии которых удачно образовывали начало греческого алфавита, дал «альфа, бета, гамма-теорию» образования элементов в результате взрыва илема. (Истины ради надо сказать, что Бете никакого участия в этой работе не принимал и его имя понадобилось Гамову для изящества заголовка.) Указанная теория предполагала, что илем разлетелся буквально на отдельные нейтроны. Нейтроны же в существовавших адских условиях быстро распадались на электроны и протоны.

Посмотрите на рисунки. На них представлены пять стадий, или пять эпизодов, из истории вселенной Гамова. Каждый из них помечен временем, в течение которого занавес был поднят.

Итак, первый акт — 0 ? 5 минут от «начала». Илем только что взорвался. Вы видите в кадре смесь частиц. Флегматичные нейтроны, не выдержав чудовищных температур, распадаются на протоны и электроны, сопровождаемые юркими фотонами. В такой «атмосфере»», несмотря на «тесноту», частицы движутся с энергией, которую можно сравнить с энергией современных ускорителей. В недрах илема яростно кипят, ядерные реакции — частицы, сталкиваясь, образовывают ядра легких элементов, которые тут же распадаются…

Второй акт — от пятой минуты до получаса родившегося времени. Это уже не илем, но еще и не вселенная. Вместе с расширением падает температура. Надо полагать, что подобный процесс не является новостью для эрудированного читателя. Вспомните — ведь это не что иное, как хорошо знакомый принцип работы обыкновенного холодильника.

Полчаса непрерывного взрыва достаточно, чтобы заготовить основное количество стройматериала для всей дальнейшей работы. Читатель, конечно, знает, что свободные нейтроны имеют период полураспада всего 12-13 минут. И через полчаса их остается слишком мало для того, чтобы реакции могли идти с прежней легкостью. Вместе с протонами нейтроны образуют дейтоны и тритоны, ядра гелия и других, более тяжелых элементов. Тридцать минут спустя от всего первоначального количества нейтронов остается примерно восьмая часть… Реакции синтеза затухают…

  «Big bang», или «Большой взрыв», в науке о происхождении вселенной

Следующий, третий акт занимает период от тридцатой минуты «действа» до двухсотпятидесятимиллионного года существования. Автор надеется, что читатель понимает, насколько следует доверять приводимым цифрам. Гипотеза есть гипотеза, и самое большое, на что может претендовать ее творец, — это примерный порядок совпадения величин… Итак, через полчаса после взрыва образовавшиеся ядра приступили к ловле бездомных электронов и стали образовывать атомы. Атомы скапливались в облака, которые в дальнейшем дали начало галактикам и звездам. Этот период Гамов характеризует возникновением протогалактики…

Акт четвертый — первый миллиард существования на исходе. Во вселенной возникли галактики, в недрах которых зарождаются протозвезды и, может быть, даже протопланеты.

И наконец, последний акт охватывал следующие четыре миллиарда лет и заканчивался в нашем с вами времени. Всего получалось примерно 5 миллиардов! Но внимательного читателя это не должно удивлять, потому что он помнит, как в шестидесятых годах нашего столетия произошла переоценка временной шкалы в сторону, ее увеличения, и пять миллиардов лет вселенной превратились в тринадцать! Впрочем, этот факт еще найдет себе место в нашей книжке. К сожалению, сложная и путаная история космологии не позволяет выстроить все события последовательно в хронологическом порядке. И отступления, забегания вперед неизбежны так же, как неизбежны и некоторые повторения.

Наглядность гипотез Леметра и Гамова привлекли к ним всеобщее внимание. По мнению многих сторонников гипотезы, такой взрыв чем-то должен быть очень похож на взрыв атомной или водородной бомбы; только, понятно, сверхбомбы, супербомбы, сверх-супер-ультра- и т. д. бомбы, бомбы, представить которую себе трудно, просто невозможно, даже обладая сверхфантастическим воображением. Это сравнение, возникшее в период «атомно-водородного бума», распространилось среди самых широких масс. Правда, может быть, причина этого сравнения кроется в том, что именно физики — участники разработки водородного оружия — и были главными болельщиками гипотезы «big bang’a».

Конечно, смущала всех сингулярность, присущая этой модели. Та самая пресловутая особая точка, или нуль-пункт вселенной. И еще смущало то, что в гипотезе так много внимания уделяется первым тридцати минутам после взрыва. Ведь возраст вселенной насчитывает миллиарды лет… По этому поводу уместно предоставить слово самому автору теории.

«Многие люди,- рассуждает Гамов, — считают, что не имеет физического смысла говорить о получасе или часе, который был 5 (сейчас по новой шкале соответственно 10-13 — А. Т.) миллиардов лет назад. Чтобы ответить им, я предлагаю: посмотрим на место в Неваде, где была взорвана несколько лет назад атомная бомба. Это место еще «горячо» из-за существования долгоживущих продуктов взрыва. Для того, чтобы создать эти продукты, достаточно было миллионной доли секунды. Простая арифметика показывает, что период, прошедший с момента этого взрыва, во столько же раз больше микросекунды, во сколько 5 (соответственно читай 10-13 — А. Т.) миллиардов лет больше «того» получаса! Но ведь от этой разницы мгновение взрыва не стало для нас менее интересным и менее существенным».

Если все было именно так, как предполагал Гамов, то и сегодня где-нибудь во вселенной можно отыскать следы колоссальных температур, царствовавших в первые мгновения «большого взрыва»?.. Ну пусть хоть «остывшие остатки» каких-то первоначальных квантов…

Пока вещество находилось в ионизованном состоянии, оно представляло собой горячую плазму из электронов, протонов и ядер легких элементов (в основном гелия).

Плазма эта сначала находилась в динамическом равновесии. Это значит, что частицы излучают и поглощают одинаковые количества квантов электромагнитной энергии. Температура излучения находится в полном соответствии с температурой плазмы. Но постепенно расстояния между частицами увеличиваются. (Ведь взрыв сообщил им громадные скорости разбегания.) Теперь, чтобы излученный квант энергии мог добраться до частицы, способной его поглотить, нужно было время. В пути энергия кванта уменьшается.

Таким образом, с расширением вселенной температура излучения падает. Чем дальше лететь кванту, тем «холоднее» он должен становиться. (Вспомните, что красное смещение от далеких галактик больше, чем от близких.)

Через несколько сотен тысячелетий после «начала» температура уже изрядно «разжижившейся» среды падает примерно до трех-четырех тысяч градусов. Теперь уже не все излученные кванты поглощаются возбужденными частицами. Среда становится «прозрачной» для излучения, оно как бы «отрывается» от нее и начинает «гулять» по вселенной. Вот эти-то электромагнитные волны и должны бы дожить до наших дней, пусть «постаревшие», «охладившиеся». Расчеты теоретиков показали, что, добравшись до нас, до нашего времени, это излучение должно иметь температуру не выше трех-четырех градусов по Кельвину.

Значит, «горячая» модель Гамова требовала, чтобы в наши дни во вселенной можно было обнаружить излучение в 3-4°К. В 1948 году средств для подобных наблюдений еще не существовало. Радиоастрономия в послевоенные годы только начинала свой «марш-бросок», и измерение излучения столь низких температур казалось радиоастрономам тех лет делом совершенно безнадежным.

  «Big bang»

В середине XX столетия, впрочем, как и во все другие времена, когда человечество оказывалось незанятым на фронтах, вторая мировая война уступила место войне «холодной». Вопросы происхождения вселенной снова оказались в центре ожесточенной идеологической борьбы.

Одно из наиболее влиятельных направлений идеалистической философии — неотомизм. Неотомисты широко пользуются введенным Фомой Аквинским еще в XIII веке принципом гармонии разума и веры, с особой охотой используя нерешенные вопросы науки для защиты религиозных догматов. Недаром еще в 1879 году неотомизм был объявлен официальной философской доктриной католической церкви. А в 1951 году папа римский Пий XII выступил с большой речью, призывая признать достижения современной науки в качестве доказательств всемогущества бога.

Часть ученых — представителей материалистического направления — поспешили решительно отмежеваться от идеалистических тенденций в космологии и… впали в другую крайность. Вместе с богом они отреклись от всей теории расширяющейся вселенной. Довольно долго среди материалистов «хорошим тоном» считалась верность идее бесконечной вселенной, тогда как релятивистская космология объявлялась «бесплодной математической игрой, лишенной какого бы то ни было астрономического значения»; общая же теория относительности рассматривалась как «математические упражнения, не имеющие ничего общего с космологией».

Так споры о моделях мира переплелись со спорами о мировоззрении двух непримиримых лагерей: материализма и идеализма.

Между тем спорящим сторонам предстояло договориться прежде всего о самом предмете спора. Потому что, как выяснилось, далеко не все представители бурно развивающейся космологии вкладывали в термин «вселенная» одинаковое понятие. Короче говоря, к середине текущего столетия космология представляла собой хорошо и со знанием дела перепутанный клубок противоречий. Распутывать его выпало на долю ученым нашего поколения.